Compare commits
5 Commits
| Author | SHA1 | Date | |
|---|---|---|---|
| 29715ff95d | |||
| 74ae33c267 | |||
| a586a15f8c | |||
| 1384d2036e | |||
| 905bad7af3 |
@@ -1,4 +1,4 @@
|
||||
\documentclass[usenames,dvipsnames]{beamer}
|
||||
\documentclass[usenames,dvipsnames, aspectratio=169]{beamer}
|
||||
%----------------------------------------------------------------------------------------
|
||||
% Struktur und Pointer Referat
|
||||
% 20.04.2020
|
||||
@@ -40,12 +40,9 @@
|
||||
% TITLE SLIDE
|
||||
%----------------------------------------------------------------------------------------
|
||||
|
||||
\title{Cross-Model Pseudo-Labeling}
|
||||
|
||||
\subtitle{for Semi-Supervised Action Recognition}
|
||||
|
||||
\title{De-Cluttering Scatterplots}
|
||||
\subtitle{with Integral Images}
|
||||
\author{Lukas Heiligenbrunner}
|
||||
|
||||
\date{\today}
|
||||
|
||||
%------------------------------------------------
|
||||
@@ -59,276 +56,351 @@
|
||||
\end{frame}
|
||||
|
||||
|
||||
%----------------------------------------------------------------------------------------
|
||||
% SECTION 1
|
||||
%----------------------------------------------------------------------------------------
|
||||
% todo pic of action
|
||||
|
||||
|
||||
\section{The Goal}
|
||||
\begin{frame}{The goal}
|
||||
\begin{itemize}
|
||||
\item Train model
|
||||
\item Recognize action of person
|
||||
\item From video [$\approx$10sec]
|
||||
\item E.g.:
|
||||
\begin{itemize}
|
||||
\item brushing hair
|
||||
\item riding bike
|
||||
\item dancing
|
||||
\item playing violin
|
||||
\end{itemize}
|
||||
\item As generic as possible
|
||||
\end{itemize}
|
||||
\end{frame}
|
||||
|
||||
%----------------------------------------------------------------------------------------
|
||||
% SECTION 2
|
||||
% SECTION 1: INTRODUCTION
|
||||
%----------------------------------------------------------------------------------------
|
||||
|
||||
|
||||
\section{The Problem} % Section title slide, unnumbered
|
||||
|
||||
%------------------------------------------------
|
||||
|
||||
\begin{frame}{Missing Labels}
|
||||
\begin{itemize}
|
||||
\item Supervised action recoginition
|
||||
\begin{itemize}
|
||||
\item lots of labeled samples necessary
|
||||
\item videos
|
||||
\end{itemize}
|
||||
\item Labeling Samples very expensive
|
||||
\begin{itemize}
|
||||
\item Avoid!
|
||||
\end{itemize}
|
||||
\item Tremendous amount of unlabled data
|
||||
\begin{itemize}
|
||||
\item YouTube
|
||||
\end{itemize}
|
||||
\item Using semi-supervised learning might be benefitial
|
||||
\end{itemize}
|
||||
\end{frame}
|
||||
|
||||
%------------------------------------------------
|
||||
|
||||
\begin{frame}{What's all about Semi supervised?}
|
||||
\begin{itemize}
|
||||
\item Supervised learning
|
||||
\begin{itemize}
|
||||
\item Data samples
|
||||
\item Target labels
|
||||
\item Each sample is associated to target label
|
||||
\end{itemize}
|
||||
\item Unsupervised learning
|
||||
\begin{itemize}
|
||||
\item Data samples
|
||||
\item target is to find patterns in data
|
||||
\item without supervision
|
||||
\end{itemize}
|
||||
\item Semi-Supervised learning
|
||||
\begin{itemize}
|
||||
\item combination of both
|
||||
\item have labeled \& unlabeled data
|
||||
\item labeled data guides learning process
|
||||
\item unlabled helps to gain additional information
|
||||
\item goal is performance improvement
|
||||
\end{itemize}
|
||||
\end{itemize}
|
||||
\end{frame}
|
||||
|
||||
%------------------------------------------------
|
||||
|
||||
\begin{frame}[allowframebreaks]{What's already been done}
|
||||
\begin{itemize}
|
||||
\item Pseudo-labeling
|
||||
\item Train model on labeled data
|
||||
\begin{itemize}
|
||||
\item Eg. 1\%/10\% of data labeled
|
||||
\end{itemize}
|
||||
\item Predict pseudo-labels from unlabeled data
|
||||
\item Confidence of prediction [Threshold]
|
||||
\item Drop/Use prediction to train model further
|
||||
\item Finally use pseudo-labels + 1/10\% to train main model
|
||||
|
||||
\end{itemize}
|
||||
|
||||
\framebreak
|
||||
\begin{itemize}
|
||||
\item quantity and quality of pseudo-labels
|
||||
\item significant impact on main model accuracy!
|
||||
\item we want to improve pseudo-label framework as much as possible
|
||||
\end{itemize}
|
||||
\end{frame}
|
||||
|
||||
%----------------------------------------------------------------------------------------
|
||||
% SECTION 2
|
||||
% SECTION 2: PROBLEM
|
||||
%----------------------------------------------------------------------------------------
|
||||
|
||||
\section{Introduction}
|
||||
|
||||
\section{Cross-Model Pseudo-Labeling}
|
||||
|
||||
\begin{frame}[allowframebreaks]{Papers approach}
|
||||
\begin{frame}{Problem: Scatterplots Clutter}
|
||||
\begin{itemize}
|
||||
\item Based on complementary-representations of model
|
||||
\item Models of different size
|
||||
\item Different structural-bias $\rightarrow$ different category-wise performance
|
||||
\item Small model
|
||||
\item Scatterplots are fundamental for exploring multidimensional data
|
||||
\item Modern datasets: millions of samples
|
||||
\item Pixel resolution fixed → many samples map to the same pixel
|
||||
\item This results in \textbf{overplotting}
|
||||
\item Consequences:
|
||||
\begin{itemize}
|
||||
\item lower capacity
|
||||
\item better captures temporal dynamics in recognizing actions
|
||||
\item scene changes/motion over time
|
||||
\item Occlusion of clusters
|
||||
\item Loss of density information
|
||||
\item Hard to select and see individual items
|
||||
%\item Misleading visual perception
|
||||
\end{itemize}
|
||||
\item Large model
|
||||
\item A method is needed to \textbf{declutter} without losing structure
|
||||
\end{itemize}
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}
|
||||
\centering
|
||||
\includegraphics[scale=0.8]{rsc/overplotting}
|
||||
\footnotesize\text{Source: \cite{statisticsglobe_overplotting_r}}
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{Goal of the Paper}
|
||||
\begin{itemize}
|
||||
\item Goal:
|
||||
\begin{itemize}
|
||||
\item better learns spatial semantics
|
||||
\item to distinguish different action instances
|
||||
\item localize/identify objects in specific scene
|
||||
\item Reduce clutter
|
||||
\item Preserve neighborhood relations
|
||||
\item Achieve uniform sample distribution
|
||||
\item Maintain interpretability
|
||||
\end{itemize}
|
||||
\end{itemize}
|
||||
\end{frame}
|
||||
|
||||
\framebreak
|
||||
|
||||
\begin{frame}{Limitations of Traditional Approaches}
|
||||
\begin{itemize}
|
||||
\item Cross-Model Pseudo-Labeling
|
||||
\item Primary backbone (large model)
|
||||
\item Supplemented by lightweight auxiliary network
|
||||
\item Transparency-based methods
|
||||
\begin{itemize}
|
||||
\item Different structure
|
||||
\item Fewer channels (smaller)
|
||||
\item Improve density perception
|
||||
\item But still lose individual sample visibility
|
||||
\end{itemize}
|
||||
\item Different representation of data complements primary backbone
|
||||
\item Down-sampling
|
||||
\begin{itemize}
|
||||
\item Removes data → not acceptable for analysis
|
||||
\end{itemize}
|
||||
\item Local spatial distortions
|
||||
\begin{itemize}
|
||||
\item Risk of collisions
|
||||
\item Often non-monotonic mappings
|
||||
\end{itemize}
|
||||
\item Need a \textbf{global}, \textbf{smooth}, \textbf{monotonic}, \textbf{collision-free} method
|
||||
\end{itemize}
|
||||
\end{frame}
|
||||
%----------------------------------------------------------------------------------------
|
||||
% SECTION 3: BACKGROUND
|
||||
%----------------------------------------------------------------------------------------
|
||||
|
||||
\section{Background:\\Density Fields \& Integral Images}
|
||||
|
||||
\begin{frame}{Density Estimation}
|
||||
\begin{itemize}
|
||||
\item Given samples $z_i = (x_i, y_i)$
|
||||
\item Build smoothed density:
|
||||
\[
|
||||
d_r(x,y) = \sum_{p=1}^n \varphi_r(x-x_p, y-y_p)
|
||||
\]
|
||||
\item Typically Gaussian kernel
|
||||
\item Add global constant $d_0$ for stability:
|
||||
\[
|
||||
d(i,j) = d_r(i,j) + d_0
|
||||
\]
|
||||
\item Ensures no empty regions → avoids singular mappings
|
||||
\end{itemize}
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{Structure Visualization}
|
||||
\includegraphics[scale=.17]{rsc/structure}
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{Performance Perspectives}
|
||||
\begin{frame}{Integral Images (InIms) I}
|
||||
\begin{itemize}
|
||||
\item 1\% labeled data + 400 Labels
|
||||
\item Kinetics-400 dataset
|
||||
\end{itemize}
|
||||
\includegraphics[scale=.205]{rsc/performance_comparison}
|
||||
\end{frame}
|
||||
|
||||
|
||||
\section{Give me the math!}
|
||||
|
||||
\begin{frame}{Definitions}
|
||||
\begin{itemize}
|
||||
\item Labeled data set of size $N_l$\\
|
||||
$\mathcal{V} = \{(v_1,y_1), \dots, (v_{N_l}, y_{N_l})\}$
|
||||
\item Unlabeled data set of size $N_u$\\
|
||||
$\mathcal{U} = \{u_1, \dots, u_{N_u}\}$
|
||||
\item in general $\lvert\mathcal{U}\rvert \gg \lvert\mathcal{V}\rvert$\\
|
||||
\item Integral images compute cumulative sums over regions
|
||||
\item Four standard tables:
|
||||
\[
|
||||
\alpha,\beta,\gamma,\delta
|
||||
\]
|
||||
\item Four tilted (45°) tables:
|
||||
\[
|
||||
\alpha_t, \beta_t, \gamma_t, \delta_t
|
||||
\]
|
||||
\item Each encodes global density distribution
|
||||
\item Key advantage:
|
||||
\begin{itemize}
|
||||
\item Displacements depend on \textbf{global density}, not local neighborhood
|
||||
\item Avoids collisions
|
||||
\end{itemize}
|
||||
\end{itemize}
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}[allowframebreaks]{How existing method \textit{FixMatch} works}
|
||||
\begin{frame}{Integral Images (InIms) II}
|
||||
\centering
|
||||
\includegraphics[scale=0.3]{rsc/2408.06513v1_page_6_5}\\
|
||||
\footnotesize\text{Source: \cite{Rave_2025}}
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{Integral Images (InIms) III}
|
||||
\centering
|
||||
\includegraphics[scale=0.3]{rsc/2408.06513v1_page_6_6}\\
|
||||
\footnotesize\text{Source: \cite{Rave_2025}}
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{Integral Images (InIms) IV}
|
||||
\centering
|
||||
\includegraphics[scale=0.3]{rsc/2408.06513v1_page_6_7}\\
|
||||
\footnotesize\text{Source: \cite{Rave_2025}}
|
||||
\end{frame}
|
||||
|
||||
%----------------------------------------------------------------------------------------
|
||||
% SECTION 4: METHOD
|
||||
%----------------------------------------------------------------------------------------
|
||||
|
||||
\section{Density-Equalizing Mapping}
|
||||
|
||||
\begin{frame}{Goal of the Mapping}
|
||||
\begin{itemize}
|
||||
\item $B_u \coloneqq \text{Batchsize}$
|
||||
\item $\tau \coloneqq \text{Confidence Threshold (Hyperparameter)}$
|
||||
\item $F(\mathcal{T}_{\text{strong}}(u_i)) \coloneqq \text{Class distribution}$
|
||||
\item $p_i \coloneqq F(\mathcal{T}_{\text{weak}}(u_i))$
|
||||
\item $\hat{y}_i \coloneqq \arg \max(p_i) \coloneqq \text{Pseudo Label}$
|
||||
\item $\mathcal{H} \coloneqq \text{Cross-entropy loss}$
|
||||
\item $\mathcal{L}_u \coloneqq \text{Loss on the unlabeled data}$
|
||||
\item $F \coloneqq \text{Model}$
|
||||
\item $\mathbbm{1} \coloneqq \text{Indicator Function}$
|
||||
\item We want to transform the scatterplot domain so that:
|
||||
\begin{itemize}
|
||||
\item dense regions expand
|
||||
\item sparse regions contract
|
||||
\item overall density becomes approximately uniform
|
||||
\end{itemize}
|
||||
\item The deformation must be:
|
||||
\begin{itemize}
|
||||
\item smooth
|
||||
\item globally consistent
|
||||
\item monotonic (no point order swaps)
|
||||
\item free of collisions
|
||||
\end{itemize}
|
||||
\item To achieve this, we compute a \textbf{density–driven displacement field}.
|
||||
\end{itemize}
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{Corrected Mapping: Key Idea}
|
||||
\begin{itemize}
|
||||
\item Let $t(x,y; d)$ be the deformation computed from the
|
||||
\textbf{actual density field} $d(x,y)$.
|
||||
\item This deformation is built from cumulative sums of density
|
||||
through the integral images.
|
||||
\item Problem: even for \textbf{constant density}, $t(x,y; d_0)$
|
||||
is \emph{not} zero (due to construction of the integral tables).
|
||||
\item Therefore:\\
|
||||
We subtract the deformation caused by constant density.
|
||||
\end{itemize}
|
||||
\begin{align*}
|
||||
\mathcal{L}_u = \frac{1}{B_u} \sum_{i=1}^{B_u} \mathbbm{1}(\max(p_i) \geq \tau) \mathcal{H}(\hat{y}_i,F(\mathcal{T}_{\text{strong}}(u_i)))
|
||||
T(x,y) = (x,y) \;+\; t(x,y; d) \;-\; t(x,y; d_0) \;
|
||||
\end{align*}
|
||||
|
||||
\framebreak
|
||||
|
||||
\begin{itemize}
|
||||
\item $\mathbbm{1}(\max(p_i) \geq \tau)$
|
||||
\begin{itemize}
|
||||
\item 'confidence-based masking'
|
||||
\item retain label only if largest probability is above threshold
|
||||
\item keep only 'high confidence' labels
|
||||
\end{itemize}
|
||||
\item $\mathcal{H}(\hat{y}_i,F(\mathcal{T}_{\text{strong}}(u_i)))$
|
||||
\begin{itemize}
|
||||
\item 'consistency regularization'
|
||||
\item cross-entropy loss of strong augmented and weak augmented data
|
||||
\end{itemize}
|
||||
\end{itemize}
|
||||
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}[allowframebreaks]{CMPL (Cross-Model Pseudo-Labeling)}
|
||||
\begin{itemize}
|
||||
\item $F(\cdot) \coloneqq \text{Primary backbone}$
|
||||
\item $A(\cdot) \coloneqq \text{Auxiliary network}$
|
||||
\item Learning on labeled data
|
||||
\begin{align*}
|
||||
\mathcal{L}_s^F &= \frac{1}{B_l} \sum_{i=1}^{B_l} \mathcal{H}(y_i,F(\mathcal{T}^F_{\text{standard}}(v_i)))\\
|
||||
\mathcal{L}_s^A &= \frac{1}{B_l} \sum_{i=1}^{B_l} \mathcal{H}(y_i,A(\mathcal{T}^F_{\text{standard}}(v_i)))
|
||||
\end{align*}
|
||||
\item $\mathcal{T}^F_{\text{standard}}(v_i) \coloneqq \text{standard augmentations for action recognition}$
|
||||
\end{itemize}
|
||||
|
||||
\framebreak
|
||||
|
||||
\begin{itemize}
|
||||
\item Learning on unlabeled data
|
||||
\begin{align*}
|
||||
\mathcal{L}_u^F &= \frac{1}{B_u} \sum_{i=1}^{B_u} \mathbbm{1}(\max(p_i^A) \geq \tau) \mathcal{H}(\hat{y}_i^A,F(\mathcal{T}_{\text{strong}}(u_i)))\\
|
||||
\mathcal{L}_u^A &= \frac{1}{B_u} \sum_{i=1}^{B_u} \mathbbm{1}(\max(p_i^F) \geq \tau) \mathcal{H}(\hat{y}_i^F,A(\mathcal{T}_{\text{strong}}(u_i)))\\
|
||||
\end{align*}
|
||||
\item Complete training objective
|
||||
\begin{align*}
|
||||
\mathcal{L} = (\mathcal{L}_s^F + \mathcal{L}_s^A) + \lambda(\mathcal{L}_u^F + \mathcal{L}_u^A)
|
||||
\end{align*}
|
||||
\item $\lambda \coloneqq \text{Balancing coefficient for unsupervised loss}$
|
||||
\item $T(x,y)$ is the \textbf{corrected mapping}.
|
||||
\item For uniform density: $t(x,y; d) = t(x,y; d_0)$ $\rightarrow$ identity mapping.
|
||||
\end{itemize}
|
||||
\end{frame}
|
||||
|
||||
% \begin{frame}{Why the Corrected Mapping Works}
|
||||
% \begin{itemize}
|
||||
% \item \textbf{Identity on uniform density}
|
||||
% \begin{itemize}
|
||||
% \item Without correction: the old mapping distorted even uniform fields.
|
||||
% \item With correction: uniform density $\rightarrow$ no deformation.
|
||||
% \end{itemize}
|
||||
% \item \textbf{Monotonicity}
|
||||
% \begin{itemize}
|
||||
% \item The corrected mapping guarantees no coordinate inversions.
|
||||
% \item Order of points is preserved along both axes.
|
||||
% \end{itemize}
|
||||
% \item \textbf{Smoothness}
|
||||
% \begin{itemize}
|
||||
% \item The mapping is built from integral images (global cumulative fields),
|
||||
% \item yielding slow, continuous changes.
|
||||
% \end{itemize}
|
||||
% \item \textbf{Stability in iteration}
|
||||
% \begin{itemize}
|
||||
% \item As the density becomes more equalized, $t(x,y;d)$ approaches $t(x,y;d_0)$.
|
||||
% \item Mapping naturally converges toward identity.
|
||||
% \end{itemize}
|
||||
% \item \textbf{No collisions}
|
||||
% \begin{itemize}
|
||||
% \item Global, monotonic deformation prevents points from crossing paths.
|
||||
% \end{itemize}
|
||||
% \end{itemize}
|
||||
% \end{frame}
|
||||
|
||||
\section{Implementation}
|
||||
|
||||
\begin{frame}{Networks}
|
||||
\begin{itemize}
|
||||
\item Auxiliary Network
|
||||
\begin{frame}{Iterative Algorithm Overview}
|
||||
\begin{enumerate}
|
||||
\item Rasterize and smooth density
|
||||
\item Compute integral images
|
||||
\item Compute corrected deformation $t(x,y)$
|
||||
\item Apply bi-linear interpolation to sample positions
|
||||
\item Iterate until:
|
||||
\begin{itemize}
|
||||
\item sub-network of primary model
|
||||
\item 3D-ResNet18
|
||||
\item \textbf{3D-ResNet50x1/4}
|
||||
\item Time budget reached
|
||||
\item Uniformity threshold reached
|
||||
\end{itemize}
|
||||
\item Backbone network
|
||||
\end{enumerate}
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}
|
||||
\centering
|
||||
\begin{figure}
|
||||
\centering
|
||||
\begin{minipage}{0.4\textwidth}
|
||||
\centering
|
||||
\includegraphics[width=\textwidth]{rsc/2408.06513v1_page_7_1}
|
||||
|
||||
\vspace{4pt}
|
||||
\footnotesize MNIST Dataset (UMAP)~\cite{Rave_2025}
|
||||
\end{minipage}
|
||||
\begin{minipage}{0.15\textwidth}
|
||||
\centering
|
||||
$\Longrightarrow$
|
||||
\end{minipage}
|
||||
\begin{minipage}{0.4\textwidth}
|
||||
\centering
|
||||
\includegraphics[width=\textwidth]{rsc/2408.06513v1_page_7_2}
|
||||
|
||||
\vspace{4pt}
|
||||
\footnotesize Visual encoding of the density-equalizing transform (32 Iterations)~\cite{Rave_2025}
|
||||
\end{minipage}
|
||||
\label{fig:figure}
|
||||
\end{figure}
|
||||
\end{frame}
|
||||
|
||||
%----------------------------------------------------------------------------------------
|
||||
% SECTION 6: VISUAL ENCODING
|
||||
%----------------------------------------------------------------------------------------
|
||||
|
||||
\section{Visual Encoding of Deformation}
|
||||
|
||||
\begin{frame}{Problem After Deformation}
|
||||
\begin{itemize}
|
||||
\item After equalization:
|
||||
\begin{itemize}
|
||||
\item larger version of aux-net
|
||||
\item \textbf{3D-ResNet50}
|
||||
\item Local densities lost
|
||||
\item Cluster shapes distorted
|
||||
\item Distances no longer meaningful
|
||||
\end{itemize}
|
||||
\item Need additional encodings to preserve structure
|
||||
\end{itemize}
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{Three Proposed Encodings I}
|
||||
\begin{itemize}
|
||||
\item \textbf{Deformed grid lines}
|
||||
\begin{itemize}
|
||||
\item Show local expansion / contraction
|
||||
\end{itemize}
|
||||
\item \textbf{Background density texture}
|
||||
\begin{itemize}
|
||||
\item Shows cluster cores after deformation
|
||||
\end{itemize}
|
||||
\item \textbf{Contour lines}
|
||||
\begin{itemize}
|
||||
\item Reveal subcluster structure
|
||||
\end{itemize}
|
||||
\end{itemize}
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{Dataset}
|
||||
\begin{itemize}
|
||||
\item Kinetics-400
|
||||
\begin{itemize}
|
||||
\item 400 categories
|
||||
\item 240k/20k training/validation samples
|
||||
\end{itemize}
|
||||
\item UCF-101
|
||||
\begin{itemize}
|
||||
\item 101 classes
|
||||
\item 9.5k/4k training/validation samples
|
||||
\end{itemize}
|
||||
\item $\approx$10sec every video
|
||||
\item 1\% or 10\% labeled subsets balanced sampled from distribution
|
||||
\end{itemize}
|
||||
\begin{frame}{Three Proposed Encodings II}
|
||||
\centering
|
||||
\begin{figure}
|
||||
\centering
|
||||
\begin{minipage}{0.3\textwidth}
|
||||
\centering
|
||||
\includegraphics[width=\textwidth]{rsc/2408.06513v1_page_7_2}
|
||||
|
||||
\vspace{4pt}
|
||||
\footnotesize Deformed grid lines~\cite{Rave_2025}
|
||||
\end{minipage}
|
||||
\begin{minipage}{0.3\textwidth}
|
||||
\centering
|
||||
\includegraphics[width=\textwidth]{rsc/2408.06513v1_page_7_3}
|
||||
|
||||
\vspace{4pt}
|
||||
\footnotesize Background density texture~\cite{Rave_2025}
|
||||
\end{minipage}
|
||||
\begin{minipage}{0.3\textwidth}
|
||||
\centering
|
||||
\includegraphics[width=\textwidth]{rsc/2408.06513v1_page_7_4}
|
||||
|
||||
\vspace{4pt}
|
||||
\footnotesize Contour lines~\cite{Rave_2025}
|
||||
\end{minipage}
|
||||
\label{fig:figure2}
|
||||
\end{figure}
|
||||
\end{frame}
|
||||
|
||||
%----------------------------------------------------------------------------------------
|
||||
% SECTION 5: IMPLEMENTATION
|
||||
%----------------------------------------------------------------------------------------
|
||||
|
||||
\begin{frame}{Performance Results}
|
||||
\includegraphics[scale=.65]{rsc/results}
|
||||
|
||||
\begin{frame}{Example I}
|
||||
\centering
|
||||
\includegraphics[scale=0.1]{rsc/2408.06513v1_page_8_1}\\
|
||||
\footnotesize\text{Source: \cite{Rave_2025}}
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{Example II}
|
||||
\centering
|
||||
\includegraphics[scale=0.1]{rsc/2408.06513v1_page_8_2}\\
|
||||
\footnotesize\text{Source: \cite{Rave_2025}}
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{Example III}
|
||||
\centering
|
||||
\includegraphics[scale=0.1]{rsc/2408.06513v1_page_8_3}\\
|
||||
\footnotesize\text{Source: \cite{Rave_2025}}
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{Example IV}
|
||||
\centering
|
||||
\includegraphics[scale=0.1]{rsc/2408.06513v1_page_8_4}\\
|
||||
\footnotesize\text{Source: \cite{Rave_2025}}
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{Example V}
|
||||
\centering
|
||||
\includegraphics[scale=0.1]{rsc/2408.06513v1_page_8_5}\\
|
||||
\footnotesize\text{Source: \cite{Rave_2025}}
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{Example VI}
|
||||
\centering
|
||||
\includegraphics[scale=0.1]{rsc/2408.06513v1_page_8_6}\\
|
||||
\footnotesize\text{Source: \cite{Rave_2025}}
|
||||
\end{frame}
|
||||
|
||||
% --- THE END
|
||||
|
||||
@@ -342,10 +414,58 @@
|
||||
|
||||
\appendix
|
||||
|
||||
\section{Backup Slides}\label{sec:backup}
|
||||
|
||||
\begin{frame}{Efficient GPU Computation}
|
||||
\begin{itemize}
|
||||
\item All major steps implemented on GPU:
|
||||
\begin{itemize}
|
||||
\item Density accumulation $\rightarrow$ vertex + fragment shader
|
||||
\item Gaussian smoothing $\rightarrow$ 2 compute-shader passes
|
||||
\item Integral image computation $\rightarrow$ fragment shader
|
||||
\end{itemize}
|
||||
\item Achieves interactive rates for millions of samples
|
||||
\end{itemize}
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{Performance}
|
||||
\begin{itemize}
|
||||
\item Runs at interactive frame rates:
|
||||
\begin{itemize}
|
||||
\item e.g. 4M samples in $\approx 3$ ms per iteration
|
||||
\end{itemize}
|
||||
%\item Standard deviation of samples/bin decreases monotonically
|
||||
%\item Overplotting fraction also decreases monotonically
|
||||
\end{itemize}
|
||||
\centering
|
||||
\includegraphics[scale=0.4]{rsc/img}\\
|
||||
Source:~\cite{Rave_2025}
|
||||
\end{frame}
|
||||
|
||||
\section{Math: Domain Transformation}
|
||||
\begin{frame}{Domain Transformation (Molchanov \& Linsen)}
|
||||
\begin{itemize}
|
||||
\item Integral Images $\rightarrow$ Transformation mapping
|
||||
\item Definition:
|
||||
\[
|
||||
t(x,y; d) = \frac{
|
||||
\alpha q_1 + \beta q_2 + \gamma q_3 + \delta q_4
|
||||
+ \alpha_t (x,1) + \beta_t (1,y) + \gamma_t (x,0) + \delta_t (0,y)
|
||||
}{2C}
|
||||
\]
|
||||
\item Problems:
|
||||
\begin{itemize}
|
||||
\item Not identity for uniform density
|
||||
\item Iteration unstable
|
||||
\item Does not converge to equalized distribution
|
||||
\end{itemize}
|
||||
\end{itemize}
|
||||
\end{frame}
|
||||
|
||||
|
||||
\begin{frame}{Sources}
|
||||
\nocite{*} % Display all references regardless of if they were cited
|
||||
\bibliography{sources}
|
||||
\bibliographystyle{plain}
|
||||
\end{frame}
|
||||
|
||||
\end{document}
|
||||
|
||||
BIN
presentation/rsc/2408.06513v1_page_6_5.png
Normal file
|
After Width: | Height: | Size: 30 KiB |
BIN
presentation/rsc/2408.06513v1_page_6_6.png
Normal file
|
After Width: | Height: | Size: 39 KiB |
BIN
presentation/rsc/2408.06513v1_page_6_7.png
Normal file
|
After Width: | Height: | Size: 44 KiB |
BIN
presentation/rsc/2408.06513v1_page_7_1.png
Normal file
|
After Width: | Height: | Size: 196 KiB |
BIN
presentation/rsc/2408.06513v1_page_7_2.png
Normal file
|
After Width: | Height: | Size: 1.0 MiB |
BIN
presentation/rsc/2408.06513v1_page_7_3.png
Normal file
|
After Width: | Height: | Size: 1.6 MiB |
BIN
presentation/rsc/2408.06513v1_page_7_4.png
Normal file
|
After Width: | Height: | Size: 1001 KiB |
BIN
presentation/rsc/2408.06513v1_page_8_1.png
Normal file
|
After Width: | Height: | Size: 279 KiB |
BIN
presentation/rsc/2408.06513v1_page_8_2.png
Normal file
|
After Width: | Height: | Size: 403 KiB |
BIN
presentation/rsc/2408.06513v1_page_8_3.png
Normal file
|
After Width: | Height: | Size: 548 KiB |
BIN
presentation/rsc/2408.06513v1_page_8_4.png
Normal file
|
After Width: | Height: | Size: 746 KiB |
BIN
presentation/rsc/2408.06513v1_page_8_5.png
Normal file
|
After Width: | Height: | Size: 927 KiB |
BIN
presentation/rsc/2408.06513v1_page_8_6.png
Normal file
|
After Width: | Height: | Size: 1.1 MiB |
BIN
presentation/rsc/img.png
Normal file
|
After Width: | Height: | Size: 49 KiB |
BIN
presentation/rsc/overplotting.png
Normal file
|
After Width: | Height: | Size: 188 KiB |
@@ -1,16 +1,20 @@
|
||||
@InProceedings{Xu_2022_CVPR,
|
||||
author = {Xu, Yinghao and Wei, Fangyun and Sun, Xiao and Yang, Ceyuan and Shen, Yujun and Dai, Bo and Zhou, Bolei and Lin, Stephen},
|
||||
title = {Cross-Model Pseudo-Labeling for Semi-Supervised Action Recognition},
|
||||
booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
|
||||
month = {June},
|
||||
year = {2022},
|
||||
pages = {2959-2968}
|
||||
}
|
||||
@article{Rave_2025,
|
||||
title={De-Cluttering Scatterplots With Integral Images},
|
||||
volume={31},
|
||||
ISSN={2160-9306},
|
||||
url={http://dx.doi.org/10.1109/TVCG.2024.3381453},
|
||||
DOI={10.1109/tvcg.2024.3381453},
|
||||
number={4},
|
||||
journal={IEEE Transactions on Visualization and Computer Graphics},
|
||||
publisher={Institute of Electrical and Electronics Engineers (IEEE)},
|
||||
author={Rave, Hennes and Molchanov, Vladimir and Linsen, Lars},
|
||||
year={2025},
|
||||
month=apr, pages={2114–2126} }
|
||||
|
||||
@online{knuthwebsite,
|
||||
author = "Kihyuk Sohn, David Berthelot, Chun-Liang Li",
|
||||
title = "FixMatch: Simplifying Semi-Supervised Learning with Consistency and Confidence",
|
||||
url = "https://arxiv.org/abs/2001.07685",
|
||||
addendum = "(accessed: 20.03.2023)",
|
||||
keywords = "FixMatch, semi-supervised"
|
||||
@online{statisticsglobe_overplotting_r,
|
||||
author = {Statistics Globe},
|
||||
title = {Avoid Overplotting in R (4 Examples) | Point Size, Opacity \& Color},
|
||||
year = {2025},
|
||||
url = {https://statisticsglobe.com/avoid-overplotting-r},
|
||||
note = {Accessed: 2025-11-23}
|
||||
}
|
||||
|
||||