Files
Seminar_in_AI_Master/presentation/main.tex

475 lines
16 KiB
TeX
Raw Blame History

This file contains ambiguous Unicode characters
This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.
\documentclass[usenames,dvipsnames, aspectratio=169]{beamer}
%----------------------------------------------------------------------------------------
% Struktur und Pointer Referat
% 20.04.2020
%----------------------------------------------------------------------------------------
\usetheme[nofirafonts]{focus}
\usepackage[utf8]{inputenc}
\usepackage{booktabs}
\usepackage{amsmath}
\usepackage{amssymb}
\usepackage{amsfonts}
\usepackage{bbm}
\usepackage{hyperref}
\usepackage{graphicx}
\usepackage{xcolor}
\usepackage{mathtools}
\RequirePackage[T1]{fontenc}
\PassOptionsToPackage{sfdefault}{FiraSans}
\RequirePackage{FiraSans}
\RequirePackage{FiraMono}
% Farbdefinitionen
\definecolor{backgroundcoloreq}{RGB}{180,140,0}
\definecolor{codegreen}{rgb}{0,0.6,0}
\definecolor{codegray}{rgb}{0.5,0.5,0.5}
\definecolor{codepurple}{rgb}{0.58,0,0.82}
\definecolor{codeorange}{RGB}{190,100,0}
% we wanna use default caleographic alphabet
\DeclareMathAlphabet{\mathcal}{OMS}{cmbrs}{m}{n}
%----------------------------------------------------------------------------------------
% TITLE SLIDE
%----------------------------------------------------------------------------------------
\title{De-Cluttering Scatterplots}
\subtitle{with Integral Images}
\author{Lukas Heiligenbrunner}
\date{\today}
%------------------------------------------------
\begin{document}
%------------------------------------------------
\begin{frame}
\maketitle
\end{frame}
%----------------------------------------------------------------------------------------
% SECTION 1: INTRODUCTION
%----------------------------------------------------------------------------------------
%----------------------------------------------------------------------------------------
% SECTION 2: PROBLEM
%----------------------------------------------------------------------------------------
\section{Introduction}
\begin{frame}{Problem: Scatterplots Clutter}
\begin{itemize}
\item Scatterplots are fundamental for exploring multidimensional data
\item Modern datasets: millions of samples
\item Pixel resolution fixed → many samples map to the same pixel
\item This results in \textbf{overplotting}
\item Consequences:
\begin{itemize}
\item Occlusion of clusters
\item Loss of density information
\item Hard to select and see individual items
%\item Misleading visual perception
\end{itemize}
\item A method is needed to \textbf{declutter} without losing structure
\end{itemize}
\end{frame}
\begin{frame}
\centering
\includegraphics[scale=0.8]{rsc/overplotting}
\footnotesize\text{Source: \cite{statisticsglobe_overplotting_r}}
\end{frame}
\begin{frame}{Goal of the Paper}
\begin{itemize}
\item Goal:
\begin{itemize}
\item Reduce clutter
\item Preserve neighborhood relations
\item Achieve uniform sample distribution
\item Maintain interpretability
\end{itemize}
\end{itemize}
\end{frame}
\begin{frame}{Limitations of Traditional Approaches}
\begin{itemize}
\item Transparency-based methods
\begin{itemize}
\item Improve density perception
\item But still lose individual sample visibility
\end{itemize}
\item Down-sampling
\begin{itemize}
\item Removes data → not acceptable for analysis
\end{itemize}
\item Local spatial distortions
\begin{itemize}
\item Risk of collisions
\item Often non-monotonic mappings
\end{itemize}
\item Need a \textbf{global}, \textbf{smooth}, \textbf{monotonic}, \textbf{collision-free} method
\end{itemize}
\end{frame}
%----------------------------------------------------------------------------------------
% SECTION 3: BACKGROUND
%----------------------------------------------------------------------------------------
\section{Background:\\Density Fields \& Integral Images}
\begin{frame}{Density Estimation}
\begin{itemize}
\item Given samples $z_i = (x_i, y_i)$
\item Build smoothed density:
\[
d_r(x,y) = \sum_{p=1}^n \varphi_r(x-x_p, y-y_p)
\]
\item Typically Gaussian kernel
\item Add global constant $d_0$ for stability:
\[
d(i,j) = d_r(i,j) + d_0
\]
\item Ensures no empty regions → avoids singular mappings
\end{itemize}
\end{frame}
\begin{frame}{Integral Images (InIms) I}
\begin{itemize}
\item Integral images compute cumulative sums over regions
\item Four standard tables:
\[
\alpha,\beta,\gamma,\delta
\]
\item Four tilted (45°) tables:
\[
\alpha_t, \beta_t, \gamma_t, \delta_t
\]
\item Each encodes global density distribution
\item Key advantage:
\begin{itemize}
\item Displacements depend on \textbf{global density}, not local neighborhood
\item Avoids collisions
\end{itemize}
\end{itemize}
\end{frame}
\begin{frame}{Integral Images (InIms) II}
\centering
\includegraphics[scale=0.3]{rsc/2408.06513v1_page_6_5}\\
\footnotesize\text{Source: \cite{Rave_2025}}
\end{frame}
\begin{frame}{Integral Images (InIms) III}
\centering
\includegraphics[scale=0.3]{rsc/2408.06513v1_page_6_6}\\
\footnotesize\text{Source: \cite{Rave_2025}}
\end{frame}
\begin{frame}{Integral Images (InIms) IV}
\centering
\includegraphics[scale=0.3]{rsc/2408.06513v1_page_6_7}\\
\footnotesize\text{Source: \cite{Rave_2025}}
\end{frame}
%----------------------------------------------------------------------------------------
% SECTION 4: METHOD
%----------------------------------------------------------------------------------------
\section{Density-Equalizing Mapping}
\begin{frame}{Goal of the Mapping}
\begin{itemize}
\item We want to transform the scatterplot domain so that:
\begin{itemize}
\item dense regions expand
\item sparse regions contract
\item overall density becomes approximately uniform
\end{itemize}
\item The deformation must be:
\begin{itemize}
\item smooth
\item globally consistent
\item monotonic (no point order swaps)
\item free of collisions
\end{itemize}
\item To achieve this, we compute a \textbf{densitydriven displacement field}.
\end{itemize}
\end{frame}
\begin{frame}{Corrected Mapping: Key Idea}
\begin{itemize}
\item Let $t(x,y; d)$ be the deformation computed from the
\textbf{actual density field} $d(x,y)$.
\item This deformation is built from cumulative sums of density
through the integral images.
\item Problem: even for \textbf{constant density}, $t(x,y; d_0)$
is \emph{not} zero (due to construction of the integral tables).
\item Therefore:\\
We subtract the deformation caused by constant density.
\end{itemize}
\begin{align*}
T(x,y) = (x,y) \;+\; t(x,y; d) \;-\; t(x,y; d_0) \;
\end{align*}
\begin{itemize}
\item $T(x,y)$ is the \textbf{corrected mapping}.
\item For uniform density: $t(x,y; d) = t(x,y; d_0)$ $\rightarrow$ identity mapping.
\end{itemize}
\end{frame}
% \begin{frame}{Why the Corrected Mapping Works}
% \begin{itemize}
% \item \textbf{Identity on uniform density}
% \begin{itemize}
% \item Without correction: the old mapping distorted even uniform fields.
% \item With correction: uniform density $\rightarrow$ no deformation.
% \end{itemize}
% \item \textbf{Monotonicity}
% \begin{itemize}
% \item The corrected mapping guarantees no coordinate inversions.
% \item Order of points is preserved along both axes.
% \end{itemize}
% \item \textbf{Smoothness}
% \begin{itemize}
% \item The mapping is built from integral images (global cumulative fields),
% \item yielding slow, continuous changes.
% \end{itemize}
% \item \textbf{Stability in iteration}
% \begin{itemize}
% \item As the density becomes more equalized, $t(x,y;d)$ approaches $t(x,y;d_0)$.
% \item Mapping naturally converges toward identity.
% \end{itemize}
% \item \textbf{No collisions}
% \begin{itemize}
% \item Global, monotonic deformation prevents points from crossing paths.
% \end{itemize}
% \end{itemize}
% \end{frame}
\begin{frame}{Iterative Algorithm Overview}
\begin{enumerate}
\item Rasterize and smooth density
\item Compute integral images
\item Compute corrected deformation $t(x,y)$
\item Apply bi-linear interpolation to sample positions
\item Iterate until:
\begin{itemize}
\item Time budget reached
\item Uniformity threshold reached
\end{itemize}
\end{enumerate}
\end{frame}
\begin{frame}
\centering
\begin{figure}
\centering
\begin{minipage}{0.4\textwidth}
\centering
\includegraphics[width=\textwidth]{rsc/2408.06513v1_page_7_1}
\vspace{4pt}
\footnotesize MNIST Dataset (UMAP)~\cite{Rave_2025}
\end{minipage}
\begin{minipage}{0.15\textwidth}
\centering
$\Longrightarrow$
\end{minipage}
\begin{minipage}{0.4\textwidth}
\centering
\includegraphics[width=\textwidth]{rsc/2408.06513v1_page_7_2}
\vspace{4pt}
\footnotesize Visual encoding of the density-equalizing transform (32 Iterations)~\cite{Rave_2025}
\end{minipage}
\label{fig:figure}
\end{figure}
\end{frame}
%----------------------------------------------------------------------------------------
% SECTION 6: VISUAL ENCODING
%----------------------------------------------------------------------------------------
\section{Visual Encoding of Deformation}
\begin{frame}{Problem After Deformation}
\begin{itemize}
\item After equalization:
\begin{itemize}
\item Local densities lost
\item Cluster shapes distorted
\item Distances no longer meaningful
\end{itemize}
\item Need additional encodings to preserve structure
\end{itemize}
\end{frame}
\begin{frame}{Three Proposed Encodings I}
\begin{itemize}
\item \textbf{Deformed grid lines}
\begin{itemize}
\item Show local expansion / contraction
\end{itemize}
\item \textbf{Background density texture}
\begin{itemize}
\item Shows cluster cores after deformation
\end{itemize}
\item \textbf{Contour lines}
\begin{itemize}
\item Reveal subcluster structure
\end{itemize}
\end{itemize}
\end{frame}
\begin{frame}{Three Proposed Encodings II}
\centering
\begin{figure}
\centering
\begin{minipage}{0.3\textwidth}
\centering
\includegraphics[width=\textwidth]{rsc/2408.06513v1_page_7_2}
\vspace{4pt}
\footnotesize Deformed grid lines~\cite{Rave_2025}
\end{minipage}
\begin{minipage}{0.3\textwidth}
\centering
\includegraphics[width=\textwidth]{rsc/2408.06513v1_page_7_3}
\vspace{4pt}
\footnotesize Background density texture~\cite{Rave_2025}
\end{minipage}
\begin{minipage}{0.3\textwidth}
\centering
\includegraphics[width=\textwidth]{rsc/2408.06513v1_page_7_4}
\vspace{4pt}
\footnotesize Contour lines~\cite{Rave_2025}
\end{minipage}
\label{fig:figure2}
\end{figure}
\end{frame}
%----------------------------------------------------------------------------------------
% SECTION 5: IMPLEMENTATION
%----------------------------------------------------------------------------------------
\section{GPU Implementation}
\begin{frame}{Efficient GPU Computation}
\begin{itemize}
\item All major steps implemented on GPU:
\begin{itemize}
\item Density accumulation $\rightarrow$ vertex + fragment shader
\item Gaussian smoothing $\rightarrow$ 2 compute-shader passes
\item Integral image computation $\rightarrow$ fragment shader
\end{itemize}
\item Achieves interactive rates for millions of samples
\end{itemize}
\end{frame}
%----------------------------------------------------------------------------------------
% SECTION 7: RESULTS
%----------------------------------------------------------------------------------------
\begin{frame}{Performance}
\begin{itemize}
\item Runs at interactive frame rates:
\begin{itemize}
\item e.g. 4M samples in $\approx 3$ ms per iteration
\end{itemize}
%\item Standard deviation of samples/bin decreases monotonically
%\item Overplotting fraction also decreases monotonically
\end{itemize}
\centering
\includegraphics[scale=0.4]{rsc/img}
\end{frame}
\begin{frame}{Example I}
\centering
\includegraphics[scale=0.1]{rsc/2408.06513v1_page_8_1}\\
\footnotesize\text{Source: \cite{Rave_2025}}
\end{frame}
\begin{frame}{Example II}
\centering
\includegraphics[scale=0.1]{rsc/2408.06513v1_page_8_2}\\
\footnotesize\text{Source: \cite{Rave_2025}}
\end{frame}
\begin{frame}{Example III}
\centering
\includegraphics[scale=0.1]{rsc/2408.06513v1_page_8_3}\\
\footnotesize\text{Source: \cite{Rave_2025}}
\end{frame}
\begin{frame}{Example IV}
\centering
\includegraphics[scale=0.1]{rsc/2408.06513v1_page_8_4}\\
\footnotesize\text{Source: \cite{Rave_2025}}
\end{frame}
\begin{frame}{Example V}
\centering
\includegraphics[scale=0.1]{rsc/2408.06513v1_page_8_5}\\
\footnotesize\text{Source: \cite{Rave_2025}}
\end{frame}
\begin{frame}{Example VI}
\centering
\includegraphics[scale=0.1]{rsc/2408.06513v1_page_8_6}\\
\footnotesize\text{Source: \cite{Rave_2025}}
\end{frame}
% --- THE END
\begin{frame}[focus]
Thanks for your Attention!
\end{frame}
%----------------------------------------------------------------------------------------
% CLOSING/SUPPLEMENTARY SLIDES
%----------------------------------------------------------------------------------------
\appendix
\section{Backup}\label{sec:backup}
\begin{frame}{Domain Transformation (Molchanov \& Linsen)}
\begin{itemize}
\item Integral Images $\rightarrow$ Transformation mapping
\item Definition:
\[
t(x,y; d) = \frac{
\alpha q_1 + \beta q_2 + \gamma q_3 + \delta q_4
+ \alpha_t (x,1) + \beta_t (1,y) + \gamma_t (x,0) + \delta_t (0,y)
}{2C}
\]
\item Problems:
\begin{itemize}
\item Not identity for uniform density
\item Iteration unstable
\item Does not converge to equalized distribution
\end{itemize}
\end{itemize}
\end{frame}
\begin{frame}{Sources}
\nocite{*} % Display all references regardless of if they were cited
\bibliography{sources}
\bibliographystyle{plain}
\end{frame}
\end{document}