improve presentation

This commit is contained in:
2025-11-23 13:50:20 +01:00
parent 1384d2036e
commit a586a15f8c
12 changed files with 151 additions and 90 deletions

View File

@@ -1,4 +1,4 @@
\documentclass[usenames,dvipsnames]{beamer}
\documentclass[usenames,dvipsnames, aspectratio=169]{beamer}
%----------------------------------------------------------------------------------------
% Struktur und Pointer Referat
% 20.04.2020
@@ -93,7 +93,7 @@
\item Occlusion of clusters + outliers
\item Loss of density information
\item Hard to select individual items
\item Misleading visual perception
%\item Misleading visual perception
\end{itemize}
\item A method is needed to \textbf{declutter} without losing structure
\end{itemize}
@@ -102,7 +102,7 @@
\begin{frame}
\centering
\includegraphics[scale=0.8]{rsc/overplotting}
\footnotesize\text{Source: https://statisticsglobe.com/avoid-overplotting-r}
\footnotesize\text{Source: \cite{statisticsglobe_overplotting_r}}
\end{frame}
\begin{frame}{Limitations of Traditional Approaches}
@@ -147,7 +147,7 @@
\end{itemize}
\end{frame}
\begin{frame}{Integral Images (InIms)}
\begin{frame}{Integral Images (InIms) I}
\begin{itemize}
\item Integral images compute cumulative sums over regions
\item Four standard tables:
@@ -167,48 +167,100 @@
\end{itemize}
\end{frame}
\begin{frame}{Integral Images (InIms) II}
\centering
\includegraphics[scale=0.3]{rsc/2408.06513v1_page_6_5}\\
\footnotesize\text{Source: \cite{Rave_2025}}
\end{frame}
\begin{frame}{Integral Images (InIms) III}
\centering
\includegraphics[scale=0.3]{rsc/2408.06513v1_page_6_6}\\
\footnotesize\text{Source: \cite{Rave_2025}}
\end{frame}
\begin{frame}{Integral Images (InIms) IV}
\centering
\includegraphics[scale=0.3]{rsc/2408.06513v1_page_6_7}\\
\footnotesize\text{Source: \cite{Rave_2025}}
\end{frame}
%----------------------------------------------------------------------------------------
% SECTION 4: METHOD
%----------------------------------------------------------------------------------------
\section{Density-Equalizing Mapping}
\begin{frame}{Original Mapping (Molchanov \& Linsen)}
\begin{frame}{Goal of the Mapping}
\begin{itemize}
\item Prior work defined mapping:
\[
t(x,y; d) = \frac{
\alpha q_1 + \beta q_2 + \gamma q_3 + \delta q_4
+ \alpha_t (x,1) + \beta_t (1,y) + \gamma_t (x,0) + \delta_t (0,y)
}{2C}
\]
\item But:
\item We want to transform the scatterplot domain so that:
\begin{itemize}
\item Not identity for uniform density
\item Iteration unstable
\item Does not converge to equalized distribution
\item dense regions expand
\item sparse regions contract
\item overall density becomes approximately uniform
\end{itemize}
\item The deformation must be:
\begin{itemize}
\item smooth
\item globally consistent
\item monotonic (no point order swaps)
\item free of collisions
\end{itemize}
\item To achieve this, we compute a \textbf{densitydriven displacement field}.
\end{itemize}
\end{frame}
\begin{frame}{Corrected Mapping (This Paper)}
\begin{frame}{Corrected Mapping: Key Idea}
\begin{itemize}
\item Compute deformation for true density $d$
\item Compute deformation for constant density $d_0$
\item Subtract:
\[
t(x,y) = (x,y) + t(x,y; d) - t(x,y; d_0)
\]
\item This ensures:
\begin{itemize}
\item Identity for uniform density
\item Smooth monotonic deformation
\item Progressive convergence to equalization
\item No overlap of regions
\end{itemize}
\item Let $t(x,y; d)$ be the deformation computed from the
\textbf{actual density field} $d(x,y)$.
\item This deformation is built from cumulative sums of density
through the integral images.
\item Problem: even for \textbf{constant density}, $t(x,y; d_0)$
is \emph{not} zero (due to construction of the integral tables).
\item Therefore:\\
We subtract the deformation caused by constant density.
\end{itemize}
\begin{align*}
T(x,y) = (x,y) \;+\; t(x,y; d) \;-\; t(x,y; d_0) \;
\end{align*}
\begin{itemize}
\item $T(x,y)$ is the \textbf{corrected mapping}.
\item For uniform density: $t(x,y; d) = t(x,y; d_0)$ $\rightarrow$ identity mapping.
\end{itemize}
\end{frame}
% \begin{frame}{Why the Corrected Mapping Works}
% \begin{itemize}
% \item \textbf{Identity on uniform density}
% \begin{itemize}
% \item Without correction: the old mapping distorted even uniform fields.
% \item With correction: uniform density $\rightarrow$ no deformation.
% \end{itemize}
% \item \textbf{Monotonicity}
% \begin{itemize}
% \item The corrected mapping guarantees no coordinate inversions.
% \item Order of points is preserved along both axes.
% \end{itemize}
% \item \textbf{Smoothness}
% \begin{itemize}
% \item The mapping is built from integral images (global cumulative fields),
% \item yielding slow, continuous changes.
% \end{itemize}
% \item \textbf{Stability in iteration}
% \begin{itemize}
% \item As the density becomes more equalized, $t(x,y;d)$ approaches $t(x,y;d_0)$.
% \item Mapping naturally converges toward identity.
% \end{itemize}
% \item \textbf{No collisions}
% \begin{itemize}
% \item Global, monotonic deformation prevents points from crossing paths.
% \end{itemize}
% \end{itemize}
% \end{frame}
\begin{frame}{Iterative Algorithm Overview}
\begin{enumerate}
\item Rasterize and smooth density
@@ -232,7 +284,7 @@
\includegraphics[width=\textwidth]{rsc/2408.06513v1_page_7_1}
\vspace{4pt}
\footnotesize MNIST Dataset (UMAP)
\footnotesize MNIST Dataset (UMAP)~\cite{Rave_2025}
\end{minipage}
\begin{minipage}{0.15\textwidth}
\centering
@@ -243,7 +295,7 @@
\includegraphics[width=\textwidth]{rsc/2408.06513v1_page_7_2}
\vspace{4pt}
\footnotesize Visual encoding of the density-equalizing transform
\footnotesize Visual encoding of the density-equalizing transform (32 Iterations)~\cite{Rave_2025}
\end{minipage}
\label{fig:figure}
\end{figure}
@@ -267,7 +319,7 @@
\end{itemize}
\end{frame}
\begin{frame}{Three Proposed Encodings}
\begin{frame}{Three Proposed Encodings I}
\begin{itemize}
\item \textbf{Deformed grid lines}
\begin{itemize}
@@ -293,21 +345,21 @@
\includegraphics[width=\textwidth]{rsc/2408.06513v1_page_7_2}
\vspace{4pt}
\footnotesize Deformed grid lines
\footnotesize Deformed grid lines~\cite{Rave_2025}
\end{minipage}
\begin{minipage}{0.3\textwidth}
\centering
\includegraphics[width=\textwidth]{rsc/2408.06513v1_page_7_3}
\vspace{4pt}
\footnotesize Background density texture
\footnotesize Background density texture~\cite{Rave_2025}
\end{minipage}
\begin{minipage}{0.3\textwidth}
\centering
\includegraphics[width=\textwidth]{rsc/2408.06513v1_page_7_4}
\vspace{4pt}
\footnotesize Contour lines
\footnotesize Contour lines~\cite{Rave_2025}
\end{minipage}
\label{fig:figure2}
\end{figure}
@@ -323,38 +375,29 @@
\begin{itemize}
\item All major steps implemented on GPU:
\begin{itemize}
\item Density accumulation
\item Gaussian smoothing
\item Integral image computation
\item Density accumulation $\rightarrow$ vertex + fragment shader
\item Gaussian smoothing $\rightarrow$ 2 compute-shader passes
\item Integral image computation $\rightarrow$ fragment shader
\end{itemize}
\item Fast multi-pass reduction for InIms
\item Complexity:
\[
O(n + m)
\]
where $m = 2^k \times 2^k$ is texture resolution
\item Achieves interactive rates for millions of samples
\end{itemize}
\end{frame}
%----------------------------------------------------------------------------------------
% SECTION 7: RESULTS
%----------------------------------------------------------------------------------------
\section{Results}
\begin{frame}{Performance}
\begin{itemize}
\item Runs at interactive frame rates:
\begin{itemize}
\item e.g. 4M samples in $\approx 28$ ms per iteration
\item e.g. 4M samples in $\approx 3$ ms per iteration
\end{itemize}
\item Standard deviation of samples/bin decreases monotonically
\item Overplotting fraction also decreases monotonically
%\item Standard deviation of samples/bin decreases monotonically
%\item Overplotting fraction also decreases monotonically
\end{itemize}
\centering
\includegraphics[scale=0.4]{rsc/results}
\includegraphics[scale=0.4]{rsc/img}
\end{frame}
@@ -370,33 +413,47 @@
\appendix
\section{Backup}\label{sec:backup}
\begin{frame}{Example I}
\centering
\includegraphics[scale=0.1]{rsc/2408.06513v1_page_8_1}\\
\footnotesize\text{Source: \cite{Rave_2025}}
\end{frame}
\begin{frame}{Example II}
\centering
\includegraphics[scale=0.1]{rsc/2408.06513v1_page_8_2}\\
\footnotesize\text{Source: \cite{Rave_2025}}
\end{frame}
\begin{frame}{Example III}
\centering
\includegraphics[scale=0.1]{rsc/2408.06513v1_page_8_3}\\
\footnotesize\text{Source: \cite{Rave_2025}}
\end{frame}
\begin{frame}{Example IV}
\centering
\includegraphics[scale=0.1]{rsc/2408.06513v1_page_8_4}\\
\footnotesize\text{Source: \cite{Rave_2025}}
\end{frame}
\begin{frame}{Example V}
\centering
\includegraphics[scale=0.1]{rsc/2408.06513v1_page_8_5}\\
\footnotesize\text{Source: \cite{Rave_2025}}
\end{frame}
\begin{frame}{Example VI}
\centering
\includegraphics[scale=0.1]{rsc/2408.06513v1_page_8_6}\\
\footnotesize\text{Source: \cite{Rave_2025}}
\end{frame}
\begin{frame}{Sources}
\nocite{*} % Display all references regardless of if they were cited
\bibliography{sources}
\bibliographystyle{plain}
\end{frame}
\section{Backup}\label{sec:backup}
\begin{frame}{User Study}
\begin{itemize}
\item 25 participants, 3 tasks:
\begin{enumerate}
\item Estimate cluster size
\item Sort clusters by size
\item Select clusters (lasso)
\end{enumerate}
\item Findings:
\begin{itemize}
\item Size estimation (T1): regularized significantly better
\item Sorting (T2): regularized significantly better
\item Cluster selection (T3):
\begin{itemize}
\item Grid encoding: worst
\item Background texture: better
\item Original scatterplot: best
\end{itemize}
\end{itemize}
\end{itemize}
\end{frame}
\end{document}

Binary file not shown.

After

Width:  |  Height:  |  Size: 30 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 39 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 44 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 279 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 403 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 548 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 746 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 927 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 1.1 MiB

BIN
presentation/rsc/img.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 49 KiB

View File

@@ -1,16 +1,20 @@
@InProceedings{Xu_2022_CVPR,
author = {Xu, Yinghao and Wei, Fangyun and Sun, Xiao and Yang, Ceyuan and Shen, Yujun and Dai, Bo and Zhou, Bolei and Lin, Stephen},
title = {Cross-Model Pseudo-Labeling for Semi-Supervised Action Recognition},
booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
month = {June},
year = {2022},
pages = {2959-2968}
}
@article{Rave_2025,
title={De-Cluttering Scatterplots With Integral Images},
volume={31},
ISSN={2160-9306},
url={http://dx.doi.org/10.1109/TVCG.2024.3381453},
DOI={10.1109/tvcg.2024.3381453},
number={4},
journal={IEEE Transactions on Visualization and Computer Graphics},
publisher={Institute of Electrical and Electronics Engineers (IEEE)},
author={Rave, Hennes and Molchanov, Vladimir and Linsen, Lars},
year={2025},
month=apr, pages={21142126} }
@online{knuthwebsite,
author = "Kihyuk Sohn, David Berthelot, Chun-Liang Li",
title = "FixMatch: Simplifying Semi-Supervised Learning with Consistency and Confidence",
url = "https://arxiv.org/abs/2001.07685",
addendum = "(accessed: 20.03.2023)",
keywords = "FixMatch, semi-supervised"
@online{statisticsglobe_overplotting_r,
author = {Statistics Globe},
title = {Avoid Overplotting in R (4 Examples) | Point Size, Opacity \& Color},
year = {2025},
url = {https://statisticsglobe.com/avoid-overplotting-r},
note = {Accessed: 2025-11-23}
}