\section{Material and Methods}\label{sec:material-and-methods} \subsection{Material}\label{subsec:material} \subsubsection{Dagster} \subsubsection{Label-Studio} \subsubsection{Pytorch} \subsubsection{NVTec} \subsubsection{Imagenet} \subsection{Methods}\label{subsec:methods} \subsubsection{Active-Learning} \subsubsection{ROC and AUC} \subsubsection{RESNet} \subsubsection{CNN} \subsubsection{Softmax} The Softmax function converts $n$ numbers of a vector into a probability distribution. Its a generalization of the Sigmoid function and often used as an Activation Layer in neural networks. \begin{equation}\label{eq:softmax} \sigma(\mathbf{z})_j = \frac{e^{z_j}}{\sum_{k=1}^K e^{z_k}} \; for j\coloneqq\{1,\dots,K\} \end{equation}