\section{Experimental Results} \subsection{Does Active-Learning benefit the learning process?} With the test setup described in~\ref{sec:implementation} a test series was performed. Several different batch sizes $\mathcal{B} = \left\{ 2,4,6,8 \right\}$ and sample sizes $\mathcal{S} = \left\{ 2\mathcal{B}_i,4\mathcal{B}_i,5\mathcal{B}_i,10\mathcal{B}_i \right\}$ dependent on the selected batch size were selected. We define the baseline (passive learning) AUC curve as the supervised learning process without any active learning. The following graphs are only a subselection of the test series which give the most insights. \begin{figure} \label{fig:auc_normal_lowcer_2_10} \centering \hspace*{-0.1\linewidth}\includegraphics[width=1.2\linewidth]{../rsc/AUC_normal_lowcer_2_10} \caption{AUC with $\mathcal{B} = 2$ and $\mathcal{S}=10$} \end{figure} \begin{figure} \label{fig:auc_normal_lowcer_2_20} \centering \hspace*{-0.1\linewidth}\includegraphics[width=1.2\linewidth]{../rsc/AUC_normal_lowcer_2_20} \caption{AUC with $\mathcal{B} = 2$ and $\mathcal{S}=20$} \end{figure} \begin{figure} \label{fig:auc_normal_lowcer_2_50} \centering \hspace*{-0.1\linewidth}\includegraphics[width=1.2\linewidth]{../rsc/AUC_normal_lowcer_2_50} \caption{AUC with $\mathcal{B} = 2$ and $\mathcal{S}=50$} \end{figure} \begin{figure} \label{fig:auc_normal_lowcer_4_16} \centering \hspace*{-0.1\linewidth}\includegraphics[width=1.2\linewidth]{../rsc/AUC_normal_lowcer_4_16} \caption{AUC with $\mathcal{B} = 4$ and $\mathcal{S}=16$} \end{figure} \begin{figure} \label{fig:auc_normal_lowcer_4_24} \centering \hspace*{-0.1\linewidth}\includegraphics[width=1.2\linewidth]{../rsc/AUC_normal_lowcer_4_24} \caption{AUC with $\mathcal{B} = 4$ and $\mathcal{S}=24$} \end{figure} \begin{figure} \label{fig:auc_normal_lowcer_8_16} \centering \hspace*{-0.1\linewidth}\includegraphics[width=1.2\linewidth]{../rsc/AUC_normal_lowcer_8_16} \caption{AUC with $\mathcal{B} = 8$ and $\mathcal{S}=16$} \end{figure} \begin{figure} \label{fig:auc_normal_lowcer_8_32} \centering \hspace*{-0.1\linewidth}\includegraphics[width=1.2\linewidth]{../rsc/AUC_normal_lowcer_8_32} \caption{AUC with $\mathcal{B} = 8$ and $\mathcal{S}=32$} \end{figure} Generally a pattern can be seen: The lower the batch size the more benefits are gained by active learning. This may be caused by the fast model convergence. The lower the batch size the more pre-prediction decision points are required. This helps directing the learning with better samples of the selected metric. When the batch size is higher the model already converges to a good AUC value before the same amount of pre-predictions is reached. Moreover, when increasing the sample-space $\mathcal{S}$ from where the pre-predictions are drawn generally the performance improves. This is because the selected subset $\pmb{x} \sim \mathcal{X}_U$ has a higher chance of containing relevant elements corresponding to the selected metric. But keep in mind this improvement comes with a performance penalty because more model evaluations are required to predict the ranking scores. % todo \ref{fig:auc_normal_lowcer_2_10} shows the AUC curve with a batch size of 2 and a sample size of 10. Todo add some references to the graphs. \subsection{Is Dagster and Label-Studio a proper tooling to build an AL Loop?}\label{subsec:is-dagster-and-label-studio-a-proper-tooling-to-build-an-al loop?} The combination of Dagster and Label-Studio is a good choice for building an active-learning loop. \subsection{Does balancing the learning samples improve performance?}\label{subsec:does-balancing-the-learning-samples-improve-performance?} Not really.