lukas-heilgenbrunner
49d5e97417
All checks were successful
Build Typst document / build_typst_documents (push) Successful in 21s
200 lines
7.0 KiB
BibTeX
200 lines
7.0 KiB
BibTeX
%! Author = lukas
|
||
%! Date = 4/9/24
|
||
|
||
@InProceedings{crossentropy,
|
||
ISSN = {00359246},
|
||
URL = {http://www.jstor.org/stable/2984087},
|
||
abstract = {This paper deals first with the relationship between the theory of probability and the theory of rational behaviour. A method is then suggested for encouraging people to make accurate probability estimates, a connection with the theory of information being mentioned. Finally Wald's theory of statistical decision functions is summarised and generalised and its relation to the theory of rational behaviour is discussed.},
|
||
author = {I. J. Good},
|
||
journal = {Journal of the Royal Statistical Society. Series B (Methodological)},
|
||
number = {1},
|
||
pages = {107--114},
|
||
publisher = {[Royal Statistical Society, Wiley]},
|
||
title = {Rational Decisions},
|
||
urldate = {2024-05-23},
|
||
volume = {14},
|
||
year = {1952}
|
||
}
|
||
|
||
@misc{efficientADpaper,
|
||
title={EfficientAD: Accurate Visual Anomaly Detection at Millisecond-Level Latencies},
|
||
author={Kilian Batzner and Lars Heckler and Rebecca König},
|
||
year={2024},
|
||
eprint={2303.14535},
|
||
archivePrefix={arXiv},
|
||
primaryClass={cs.CV},
|
||
url={https://arxiv.org/abs/2303.14535},
|
||
}
|
||
|
||
@misc{patchcorepaper,
|
||
title={Towards Total Recall in Industrial Anomaly Detection},
|
||
author={Karsten Roth and Latha Pemula and Joaquin Zepeda and Bernhard Schölkopf and Thomas Brox and Peter Gehler},
|
||
year={2022},
|
||
eprint={2106.08265},
|
||
archivePrefix={arXiv},
|
||
primaryClass={cs.CV},
|
||
url={https://arxiv.org/abs/2106.08265},
|
||
}
|
||
|
||
@misc{jupyter,
|
||
author = {},
|
||
title = {{Project Jupyter Documentation}},
|
||
howpublished = "\url{https://docs.jupyter.org/en/latest/}",
|
||
year = {2024},
|
||
note = "[Online; accessed 13-May-2024]"
|
||
}
|
||
|
||
@misc{cnnintro,
|
||
title={An Introduction to Convolutional Neural Networks},
|
||
author={Keiron O'Shea and Ryan Nash},
|
||
year={2015},
|
||
eprint={1511.08458},
|
||
archivePrefix={arXiv},
|
||
primaryClass={cs.NE}
|
||
}
|
||
|
||
@misc{cnnarchitectureimg,
|
||
author = {},
|
||
title = {{What are convolutional neural networks?}},
|
||
howpublished = "\url{https://cointelegraph.com/explained/what-are-convolutional-neural-networks}",
|
||
year = {2024},
|
||
note = "[Online; accessed 12-April-2024]"
|
||
}
|
||
|
||
@misc{datasetsampleimg,
|
||
author = {},
|
||
title = {{The MVTec anomaly detection dataset (MVTec AD)}},
|
||
howpublished = "\url{https://www.mvtec.com/company/research/datasets/mvtec-ad}",
|
||
year = {2024},
|
||
note = "[Online; accessed 12-April-2024]"
|
||
}
|
||
|
||
@inproceedings{liang2017soft,
|
||
title={Soft-margin softmax for deep classification},
|
||
author={Liang, Xuezhi and Wang, Xiaobo and Lei, Zhen and Liao, Shengcai and Li, Stan Z},
|
||
booktitle={International Conference on Neural Information Processing},
|
||
pages={413--421},
|
||
year={2017},
|
||
organization={Springer}
|
||
}
|
||
|
||
@inbook{Boltzmann,
|
||
place = {Cambridge},
|
||
series = {Cambridge Library Collection - Physical Sciences},
|
||
title = {Studien über das Gleichgewicht der lebendigen Kraft zwischen bewegten materiellen Punkten},
|
||
booktitle = {Wissenschaftliche Abhandlungen},
|
||
publisher = {Cambridge University Press},
|
||
author = {Boltzmann, Ludwig},
|
||
editor = {Hasenöhrl, FriedrichEditor},
|
||
year = {2012},
|
||
pages = {49–96},
|
||
collection = {Cambridge Library Collection - Physical Sciences}, key = {value},}
|
||
|
||
@misc{resnet,
|
||
title={Deep Residual Learning for Image Recognition},
|
||
author={Kaiming He and Xiangyu Zhang and Shaoqing Ren and Jian Sun},
|
||
year={2015},
|
||
eprint={1512.03385},
|
||
archivePrefix={arXiv},
|
||
primaryClass={cs.CV}
|
||
}
|
||
|
||
@misc{snell2017prototypicalnetworksfewshotlearning,
|
||
title={Prototypical Networks for Few-shot Learning},
|
||
author={Jake Snell and Kevin Swersky and Richard S. Zemel},
|
||
year={2017},
|
||
eprint={1703.05175},
|
||
archivePrefix={arXiv},
|
||
primaryClass={cs.LG},
|
||
url={https://arxiv.org/abs/1703.05175},
|
||
}
|
||
|
||
@misc{caml_paper,
|
||
title={Context-Aware Meta-Learning},
|
||
author={Christopher Fifty and Dennis Duan and Ronald G. Junkins and Ehsan Amid and Jure Leskovec and Christopher Re and Sebastian Thrun},
|
||
year={2024},
|
||
eprint={2310.10971},
|
||
archivePrefix={arXiv},
|
||
primaryClass={cs.LG},
|
||
url={https://arxiv.org/abs/2310.10971},
|
||
}
|
||
|
||
|
||
@misc{handsonaiI,
|
||
author = {Andreas Schörgenhumer, Bernhard Schäfl, Michael Widrich},
|
||
title = {Lecture notes in Hands On AI I, Unit 4 \& 5},
|
||
month = {October},
|
||
year = {2021},
|
||
publisher={Johannes Kepler Universität Linz}
|
||
}
|
||
|
||
@misc{pmfpaper,
|
||
title={Pushing the Limits of Simple Pipelines for Few-Shot Learning: External Data and Fine-Tuning Make a Difference},
|
||
author={Shell Xu Hu and Da Li and Jan Stühmer and Minyoung Kim and Timothy M. Hospedales},
|
||
year={2022},
|
||
eprint={2204.07305},
|
||
archivePrefix={arXiv},
|
||
primaryClass={cs.CV},
|
||
url={https://arxiv.org/abs/2204.07305},
|
||
}
|
||
|
||
@misc{peng2023sgvaclipsemanticguidedvisualadapting,
|
||
title={SgVA-CLIP: Semantic-guided Visual Adapting of Vision-Language Models for Few-shot Image Classification},
|
||
author={Fang Peng and Xiaoshan Yang and Linhui Xiao and Yaowei Wang and Changsheng Xu},
|
||
year={2023},
|
||
eprint={2211.16191},
|
||
archivePrefix={arXiv},
|
||
primaryClass={cs.CV},
|
||
url={https://arxiv.org/abs/2211.16191},
|
||
}
|
||
|
||
@misc{singh2022transductivedecoupledvariationalinference,
|
||
title={Transductive Decoupled Variational Inference for Few-Shot Classification},
|
||
author={Anuj Singh and Hadi Jamali-Rad},
|
||
year={2022},
|
||
eprint={2208.10559},
|
||
archivePrefix={arXiv},
|
||
primaryClass={cs.CV},
|
||
url={https://arxiv.org/abs/2208.10559},
|
||
}
|
||
|
||
@misc{chen2024unifiedanomalysynthesisstrategy,
|
||
title={A Unified Anomaly Synthesis Strategy with Gradient Ascent for Industrial Anomaly Detection and Localization},
|
||
author={Qiyu Chen and Huiyuan Luo and Chengkan Lv and Zhengtao Zhang},
|
||
year={2024},
|
||
eprint={2407.09359},
|
||
archivePrefix={arXiv},
|
||
primaryClass={cs.CV},
|
||
url={https://arxiv.org/abs/2407.09359},
|
||
}
|
||
|
||
@misc{shalam2022selfoptimaltransportfeaturetransform,
|
||
title={The Self-Optimal-Transport Feature Transform},
|
||
author={Daniel Shalam and Simon Korman},
|
||
year={2022},
|
||
eprint={2204.03065},
|
||
archivePrefix={arXiv},
|
||
primaryClass={cs.CV},
|
||
url={https://arxiv.org/abs/2204.03065},
|
||
}
|
||
|
||
@misc{parnami2022learningexamplessummaryapproaches,
|
||
title={Learning from Few Examples: A Summary of Approaches to Few-Shot Learning},
|
||
author={Archit Parnami and Minwoo Lee},
|
||
year={2022},
|
||
eprint={2203.04291},
|
||
archivePrefix={arXiv},
|
||
primaryClass={cs.LG},
|
||
url={https://arxiv.org/abs/2203.04291},
|
||
}
|
||
|
||
@misc{chowdhury2021fewshotimageclassificationjust,
|
||
title={Few-shot Image Classification: Just Use a Library of Pre-trained Feature Extractors and a Simple Classifier},
|
||
author={Arkabandhu Chowdhury and Mingchao Jiang and Swarat Chaudhuri and Chris Jermaine},
|
||
year={2021},
|
||
eprint={2101.00562},
|
||
archivePrefix={arXiv},
|
||
primaryClass={cs.CV},
|
||
url={https://arxiv.org/abs/2101.00562},
|
||
}
|