bachelor-thesis/sources.bib
lukas-heilgenbrunner 49d5e97417
All checks were successful
Build Typst document / build_typst_documents (push) Successful in 21s
add abstract, finish the alternatvie methods and fix some todos and improve sources
2025-01-14 19:22:15 +01:00

200 lines
7.0 KiB
BibTeX
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

%! Author = lukas
%! Date = 4/9/24
@InProceedings{crossentropy,
ISSN = {00359246},
URL = {http://www.jstor.org/stable/2984087},
abstract = {This paper deals first with the relationship between the theory of probability and the theory of rational behaviour. A method is then suggested for encouraging people to make accurate probability estimates, a connection with the theory of information being mentioned. Finally Wald's theory of statistical decision functions is summarised and generalised and its relation to the theory of rational behaviour is discussed.},
author = {I. J. Good},
journal = {Journal of the Royal Statistical Society. Series B (Methodological)},
number = {1},
pages = {107--114},
publisher = {[Royal Statistical Society, Wiley]},
title = {Rational Decisions},
urldate = {2024-05-23},
volume = {14},
year = {1952}
}
@misc{efficientADpaper,
title={EfficientAD: Accurate Visual Anomaly Detection at Millisecond-Level Latencies},
author={Kilian Batzner and Lars Heckler and Rebecca König},
year={2024},
eprint={2303.14535},
archivePrefix={arXiv},
primaryClass={cs.CV},
url={https://arxiv.org/abs/2303.14535},
}
@misc{patchcorepaper,
title={Towards Total Recall in Industrial Anomaly Detection},
author={Karsten Roth and Latha Pemula and Joaquin Zepeda and Bernhard Schölkopf and Thomas Brox and Peter Gehler},
year={2022},
eprint={2106.08265},
archivePrefix={arXiv},
primaryClass={cs.CV},
url={https://arxiv.org/abs/2106.08265},
}
@misc{jupyter,
author = {},
title = {{Project Jupyter Documentation}},
howpublished = "\url{https://docs.jupyter.org/en/latest/}",
year = {2024},
note = "[Online; accessed 13-May-2024]"
}
@misc{cnnintro,
title={An Introduction to Convolutional Neural Networks},
author={Keiron O'Shea and Ryan Nash},
year={2015},
eprint={1511.08458},
archivePrefix={arXiv},
primaryClass={cs.NE}
}
@misc{cnnarchitectureimg,
author = {},
title = {{What are convolutional neural networks?}},
howpublished = "\url{https://cointelegraph.com/explained/what-are-convolutional-neural-networks}",
year = {2024},
note = "[Online; accessed 12-April-2024]"
}
@misc{datasetsampleimg,
author = {},
title = {{The MVTec anomaly detection dataset (MVTec AD)}},
howpublished = "\url{https://www.mvtec.com/company/research/datasets/mvtec-ad}",
year = {2024},
note = "[Online; accessed 12-April-2024]"
}
@inproceedings{liang2017soft,
title={Soft-margin softmax for deep classification},
author={Liang, Xuezhi and Wang, Xiaobo and Lei, Zhen and Liao, Shengcai and Li, Stan Z},
booktitle={International Conference on Neural Information Processing},
pages={413--421},
year={2017},
organization={Springer}
}
@inbook{Boltzmann,
place = {Cambridge},
series = {Cambridge Library Collection - Physical Sciences},
title = {Studien über das Gleichgewicht der lebendigen Kraft zwischen bewegten materiellen Punkten},
booktitle = {Wissenschaftliche Abhandlungen},
publisher = {Cambridge University Press},
author = {Boltzmann, Ludwig},
editor = {Hasenöhrl, FriedrichEditor},
year = {2012},
pages = {4996},
collection = {Cambridge Library Collection - Physical Sciences}, key = {value},}
@misc{resnet,
title={Deep Residual Learning for Image Recognition},
author={Kaiming He and Xiangyu Zhang and Shaoqing Ren and Jian Sun},
year={2015},
eprint={1512.03385},
archivePrefix={arXiv},
primaryClass={cs.CV}
}
@misc{snell2017prototypicalnetworksfewshotlearning,
title={Prototypical Networks for Few-shot Learning},
author={Jake Snell and Kevin Swersky and Richard S. Zemel},
year={2017},
eprint={1703.05175},
archivePrefix={arXiv},
primaryClass={cs.LG},
url={https://arxiv.org/abs/1703.05175},
}
@misc{caml_paper,
title={Context-Aware Meta-Learning},
author={Christopher Fifty and Dennis Duan and Ronald G. Junkins and Ehsan Amid and Jure Leskovec and Christopher Re and Sebastian Thrun},
year={2024},
eprint={2310.10971},
archivePrefix={arXiv},
primaryClass={cs.LG},
url={https://arxiv.org/abs/2310.10971},
}
@misc{handsonaiI,
author = {Andreas Schörgenhumer, Bernhard Schäfl, Michael Widrich},
title = {Lecture notes in Hands On AI I, Unit 4 \& 5},
month = {October},
year = {2021},
publisher={Johannes Kepler Universität Linz}
}
@misc{pmfpaper,
title={Pushing the Limits of Simple Pipelines for Few-Shot Learning: External Data and Fine-Tuning Make a Difference},
author={Shell Xu Hu and Da Li and Jan Stühmer and Minyoung Kim and Timothy M. Hospedales},
year={2022},
eprint={2204.07305},
archivePrefix={arXiv},
primaryClass={cs.CV},
url={https://arxiv.org/abs/2204.07305},
}
@misc{peng2023sgvaclipsemanticguidedvisualadapting,
title={SgVA-CLIP: Semantic-guided Visual Adapting of Vision-Language Models for Few-shot Image Classification},
author={Fang Peng and Xiaoshan Yang and Linhui Xiao and Yaowei Wang and Changsheng Xu},
year={2023},
eprint={2211.16191},
archivePrefix={arXiv},
primaryClass={cs.CV},
url={https://arxiv.org/abs/2211.16191},
}
@misc{singh2022transductivedecoupledvariationalinference,
title={Transductive Decoupled Variational Inference for Few-Shot Classification},
author={Anuj Singh and Hadi Jamali-Rad},
year={2022},
eprint={2208.10559},
archivePrefix={arXiv},
primaryClass={cs.CV},
url={https://arxiv.org/abs/2208.10559},
}
@misc{chen2024unifiedanomalysynthesisstrategy,
title={A Unified Anomaly Synthesis Strategy with Gradient Ascent for Industrial Anomaly Detection and Localization},
author={Qiyu Chen and Huiyuan Luo and Chengkan Lv and Zhengtao Zhang},
year={2024},
eprint={2407.09359},
archivePrefix={arXiv},
primaryClass={cs.CV},
url={https://arxiv.org/abs/2407.09359},
}
@misc{shalam2022selfoptimaltransportfeaturetransform,
title={The Self-Optimal-Transport Feature Transform},
author={Daniel Shalam and Simon Korman},
year={2022},
eprint={2204.03065},
archivePrefix={arXiv},
primaryClass={cs.CV},
url={https://arxiv.org/abs/2204.03065},
}
@misc{parnami2022learningexamplessummaryapproaches,
title={Learning from Few Examples: A Summary of Approaches to Few-Shot Learning},
author={Archit Parnami and Minwoo Lee},
year={2022},
eprint={2203.04291},
archivePrefix={arXiv},
primaryClass={cs.LG},
url={https://arxiv.org/abs/2203.04291},
}
@misc{chowdhury2021fewshotimageclassificationjust,
title={Few-shot Image Classification: Just Use a Library of Pre-trained Feature Extractors and a Simple Classifier},
author={Arkabandhu Chowdhury and Mingchao Jiang and Swarat Chaudhuri and Chris Jermaine},
year={2021},
eprint={2101.00562},
archivePrefix={arXiv},
primaryClass={cs.CV},
url={https://arxiv.org/abs/2101.00562},
}