{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [ { "ename": "ModuleNotFoundError", "evalue": "No module named 'torchvision'", "output_type": "error", "traceback": [ "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", "\u001b[0;31mModuleNotFoundError\u001b[0m Traceback (most recent call last)", "Cell \u001b[0;32mIn[1], line 8\u001b[0m\n\u001b[1;32m 6\u001b[0m \u001b[38;5;28;01mimport\u001b[39;00m \u001b[38;5;21;01mmatplotlib\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mpyplot\u001b[39;00m \u001b[38;5;28;01mas\u001b[39;00m \u001b[38;5;21;01mplt\u001b[39;00m\n\u001b[1;32m 7\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01mtorch\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m optim, nn\n\u001b[0;32m----> 8\u001b[0m \u001b[38;5;28;01mimport\u001b[39;00m \u001b[38;5;21;01mtorchvision\u001b[39;00m\n\u001b[1;32m 9\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01mtorchvision\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m datasets, models, transforms\n\u001b[1;32m 10\u001b[0m \u001b[38;5;28;01mimport\u001b[39;00m \u001b[38;5;21;01malbumentations\u001b[39;00m \u001b[38;5;28;01mas\u001b[39;00m \u001b[38;5;21;01mA\u001b[39;00m\n", "\u001b[0;31mModuleNotFoundError\u001b[0m: No module named 'torchvision'" ] } ], "source": [ "#import numpy as np\n", "import numpy as np\n", "import torch\n", "import cv2\n", "\n", "import matplotlib.pyplot as plt\n", "from torch import optim, nn\n", "import torchvision\n", "from torchvision import datasets, models, transforms\n", "import albumentations as A\n", "from albumentations.pytorch import ToTensorV2\n", "\n", "\n", "print(\"imports imported\")" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [], "source": [ "class Identity(nn.Module):\n", " def __init__(self):\n", " super(Identity, self).__init__()\n", " \n", " def forward(self, x):\n", " return x" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "ResNet(\n", " (conv1): Conv2d(3, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3), bias=False)\n", " (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", " (relu): ReLU(inplace=True)\n", " (maxpool): MaxPool2d(kernel_size=3, stride=2, padding=1, dilation=1, ceil_mode=False)\n", " (layer1): Sequential(\n", " (0): Bottleneck(\n", " (conv1): Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)\n", " (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", " (conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n", " (bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", " (conv3): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)\n", " (bn3): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", " (relu): ReLU(inplace=True)\n", " (downsample): Sequential(\n", " (0): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)\n", " (1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", " )\n", " )\n", " (1): Bottleneck(\n", " (conv1): Conv2d(256, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)\n", " (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", " (conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n", " (bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", " (conv3): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)\n", " (bn3): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", " (relu): ReLU(inplace=True)\n", " )\n", " (2): Bottleneck(\n", " (conv1): Conv2d(256, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)\n", " (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", " (conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n", " (bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", " (conv3): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)\n", " (bn3): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", " (relu): ReLU(inplace=True)\n", " )\n", " )\n", " (layer2): Sequential(\n", " (0): Bottleneck(\n", " (conv1): Conv2d(256, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)\n", " (bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", " (conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)\n", " (bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", " (conv3): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)\n", " (bn3): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", " (relu): ReLU(inplace=True)\n", " (downsample): Sequential(\n", " (0): Conv2d(256, 512, kernel_size=(1, 1), stride=(2, 2), bias=False)\n", " (1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", " )\n", " )\n", " (1): Bottleneck(\n", " (conv1): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)\n", " (bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", " (conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n", " (bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", " (conv3): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)\n", " (bn3): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", " (relu): ReLU(inplace=True)\n", " )\n", " (2): Bottleneck(\n", " (conv1): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)\n", " (bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", " (conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n", " (bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", " (conv3): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)\n", " (bn3): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", " (relu): ReLU(inplace=True)\n", " )\n", " (3): Bottleneck(\n", " (conv1): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)\n", " (bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", " (conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n", " (bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", " (conv3): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)\n", " (bn3): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", " (relu): ReLU(inplace=True)\n", " )\n", " )\n", " (layer3): Sequential(\n", " (0): Bottleneck(\n", " (conv1): Conv2d(512, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)\n", " (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", " (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)\n", " (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", " (conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)\n", " (bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", " (relu): ReLU(inplace=True)\n", " (downsample): Sequential(\n", " (0): Conv2d(512, 1024, kernel_size=(1, 1), stride=(2, 2), bias=False)\n", " (1): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", " )\n", " )\n", " (1): Bottleneck(\n", " (conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)\n", " (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", " (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n", " (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", " (conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)\n", " (bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", " (relu): ReLU(inplace=True)\n", " )\n", " (2): Bottleneck(\n", " (conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)\n", " (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", " (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n", " (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", " (conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)\n", " (bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", " (relu): ReLU(inplace=True)\n", " )\n", " (3): Bottleneck(\n", " (conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)\n", " (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", " (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n", " (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", " (conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)\n", " (bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", " (relu): ReLU(inplace=True)\n", " )\n", " (4): Bottleneck(\n", " (conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)\n", " (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", " (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n", " (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", " (conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)\n", " (bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", " (relu): ReLU(inplace=True)\n", " )\n", " (5): Bottleneck(\n", " (conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)\n", " (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", " (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n", " (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", " (conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)\n", " (bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", " (relu): ReLU(inplace=True)\n", " )\n", " )\n", " (layer4): Sequential(\n", " (0): Bottleneck(\n", " (conv1): Conv2d(1024, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)\n", " (bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", " (conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)\n", " (bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", " (conv3): Conv2d(512, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False)\n", " (bn3): BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", " (relu): ReLU(inplace=True)\n", " (downsample): Sequential(\n", " (0): Conv2d(1024, 2048, kernel_size=(1, 1), stride=(2, 2), bias=False)\n", " (1): BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", " )\n", " )\n", " (1): Bottleneck(\n", " (conv1): Conv2d(2048, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)\n", " (bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", " (conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n", " (bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", " (conv3): Conv2d(512, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False)\n", " (bn3): BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", " (relu): ReLU(inplace=True)\n", " )\n", " (2): Bottleneck(\n", " (conv1): Conv2d(2048, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)\n", " (bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", " (conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n", " (bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", " (conv3): Conv2d(512, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False)\n", " (bn3): BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", " (relu): ReLU(inplace=True)\n", " )\n", " )\n", " (avgpool): AdaptiveAvgPool2d(output_size=(1, 1))\n", " (fc): Linear(in_features=2048, out_features=1000, bias=True)\n", ")\n", "\n" ] } ], "source": [ "resnet50 = models.resnet50(weights=models.ResNetshotnr0_Weights.DEFAULT)\n", "\n", "print(resnetshotnr0)\n", "# Step 2: Modify the model to output features from the layer before the fully connected layer\n", "class ResNet50Embeddings(nn.Module):\n", " def __init__(self, original_model, layernr):\n", " super(ResNet50Embeddings, self).__init__()\n", " #print(list(original_model.children())[4 + layernr])\n", " #print(nn.Sequential(*list(original_model.children())[:4 + shotnr]))\n", " self.features = nn.Sequential(*list(original_model.children())[:4+layernr])\n", " #self.features = nn.Sequential(*list(original_model.children())[:-1]) # Exclude the fully connected layer\n", "\n", " def forward(self, x):\n", " x = self.features(x)\n", " x = torch.flatten(x, 1) # Flatten the tensor to (batch_size, 2048)\n", " return x\n", "\n", "# Instantiate the modified model\n", "model = ResNet50Embeddings(resnetshotnr0, shotnr) # 3 = layer before fully connected one\n", "model.eval() # Set the model to evaluation mode\n", "print()\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Test" ] }, { "cell_type": "code", "execution_count": 69, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "...............\n", "accuracy for broken_large = 0.6666666666666666\n", ".................\n", "accuracy for broken_small = 0.8823529411764706\n", "................\n", "accuracy for contamination = 0.8125\n", "overall accuracy: 0.7871732026143791\n" ] } ], "source": [ "from sklearn.metrics.pairwise import cosine_similarity,euclidean_distances\n", "from metric_learn import LMNN,NCA\n", "import math\n", "\n", "pipe = A.Compose([A.Resize(256,256), A.Normalize(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225)), ToTensorV2()])\n", "#pipe = A.Compose([A.Resize(256,256), ToTensorV2()])\n", "device = torch.device(\"cuda:0\" if torch.cuda.is_available() else \"cpu\")\n", "\n", "m = ResNet50Embeddings(resnet50, 5) # 5 = all without fully ocnnected\n", "m.eval()\n", "m.to(device)\n", "\n", "def read_img(path):\n", " img = cv2.imread(path, cv2.IMREAD_COLOR)\n", " img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)\n", " #plt.imshow(img)\n", "\n", " imgpiped = pipe(image=img)[\"image\"].unsqueeze(0)\n", " return imgpiped\n", "\n", "def compare_embeddings(emb1, emb2, distance_metric):\n", " #cosi = torch.nn.CosineSimilarity(dim=0) \n", " #output = cosine_similarity([emb1.flatten(), emb2.flatten()])\n", " #output = euclidean_distances([emb1.flatten(), emb2.flatten()], [emb1.flatten(), emb2.flatten()])\n", " output = distance_metric(emb1, emb2)\n", " return output\n", "\n", "def merge_embeddings(embeddings):\n", " # todo calc cluster center or similar\n", " return np.average(embeddings, axis=0)\n", "\n", "import os\n", "#embedding_good_1 = m(read_img(f\"./data/bottle/test/good/001.png\")).detach().numpy()\n", "#embedding_good_2 = m(read_img(f\"./data/bottle/test/good/002.png\")).detach().numpy()\n", "#embedding_good = merge_embeddings([embedding_good_1, embedding_good_2])\n", "#embedding_contermination_1 = m(read_img(f\"./data/bottle/test/contamination/001.png\")).detach().numpy()\n", "#embedding_contermination_2 = m(read_img(f\"./data/bottle/test/contamination/002.png\")).detach().numpy()\n", "#embedding_contermination = merge_embeddings([embedding_contermination_1, embedding_contermination_2])\n", "#embedding_broken_small_1 = m(read_img(f\"./data/bottle/test/broken_small/001.png\")).detach().numpy()\n", "\n", "#embeddings_test = m(read_img(f\"./data/bottle/test/contamination/004.png\")).detach().numpy()\n", "\n", "#score = compare_embeddings(embedding_good_1, embeddings_test)\n", "\n", "#def calc_base_emb(t):\n", "# base_emb_1 = m(read_img(f\"./data/bottle/test/{t}/000.png\")).detach().numpy()\n", "# base_emb_2 = m(read_img(f\"./data/bottle/test/{t}/001.png\")).detach().numpy()\n", "# base_emb_3 = m(read_img(f\"./data/bottle/test/{t}/002.png\")).detach().numpy()\n", "# base_emb_4 = m(read_img(f\"./data/bottle/test/{t}/003.png\")).detach().numpy()\n", "# base_emb_5 = m(read_img(f\"./data/bottle/test/{t}/004.png\")).detach().numpy()\n", "# base_emb = merge_embeddings([base_emb_1, base_emb_2, base_emb_3, base_emb_4, base_emb_5])\n", "# return base_emb\n", "\n", "MAIN_TYPE=\"bottle\"\n", "\n", "def calc_base_emb(t, nr):\n", " embs = []\n", " for i in range(nr):\n", " if t == \"good\":\n", " emb = m(read_img(f\"./data/{MAIN_TYPE}/train/{t}/{i:03d}.png\")).detach().numpy()\n", " else:\n", " emb = m(read_img(f\"./data/{MAIN_TYPE}/test/{t}/{i:03d}.png\")).detach().numpy()\n", " embs.append(emb)\n", " base_emb = merge_embeddings(embs)\n", " return base_emb\n", "\n", "shotnr=5\n", "goodnr=5\n", "\n", "types = {#\"good\": calc_base_emb(\"good\", goodnr), \n", " #\"bad\": merge_embeddings([calc_base_emb(\"broken_large\", shotnr), calc_base_emb(\"broken_small\", shotnr), calc_base_emb(\"contamination\", shotnr)]),\n", " \"broken_large\": calc_base_emb(\"broken_large\", shotnr), \n", " \"broken_small\": calc_base_emb(\"broken_small\", shotnr), \n", " \"contamination\": calc_base_emb(\"contamination\", shotnr)\n", " }\n", "\n", "\n", "#types = {#\"good\": calc_base_emb(\"good\", goodnr), \n", "# #\"bad\": merge_embeddings([calc_base_emb(\"bent_wire\", shotnr), calc_base_emb(\"cable_swap\", shotnr), calc_base_emb(\"combined\", shotnr), \n", "# # calc_base_emb(\"cut_inner_insulation\", shotnr), calc_base_emb(\"cut_outer_insulation\", shotnr), calc_base_emb(\"missing_cable\", shotnr), \n", "# # calc_base_emb(\"missing_wire\", shotnr), calc_base_emb(\"poke_insulation\", shotnr)]),\n", "# \"bent_wire\": calc_base_emb(\"bent_wire\", shotnr),\n", "# \"cable_swap\": calc_base_emb(\"cable_swap\", shotnr), \n", "# \"combined\": calc_base_emb(\"combined\", shotnr), \n", "# \"cut_inner_insulation\": calc_base_emb(\"cut_inner_insulation\", shotnr), \n", "# \"cut_outer_insulation\": calc_base_emb(\"cut_outer_insulation\", shotnr), \n", "# \"missing_cable\": calc_base_emb(\"missing_cable\", shotnr), \n", "# \"missing_wire\": calc_base_emb(\"missing_wire\", shotnr), \n", "# \"poke_insulation\": calc_base_emb(\"poke_insulation\", shotnr), \n", "# }\n", "\n", "# euclidean distance\n", "euclidean_distance_metric = lambda emb1,emb2 : math.pow(euclidean_distances([emb1.flatten(), emb2.flatten()], [emb1.flatten(), emb2.flatten()])[0][1], 2)\n", "# cosine metric\n", "cosine_similarity_metric = lambda emb1,emb2 : cosine_similarity([emb1.flatten(), emb2.flatten()])[0][1]\n", "\n", "lmnn = LMNN(n_neighbors=2, learn_rate=1e-3, verbose=True)\n", "#lmnn.fit(data, [0,0,0,1,1,1,2,2,2,3,3,3])\n", "\n", "lmnn_similarity_metric = lambda emb1,emb2 : lmnn.get_metric()(emb1.flatten(), emb2.flatten())\n", "\n", "Smaller_Better_Metric = False\n", "\n", "def test(type):\n", " predictions = []\n", "\n", " _, _, files = next(os.walk(f\"./data/{MAIN_TYPE}/test/{type}/\"))\n", " file_count = len(files)\n", " for i in range(5,file_count):\n", " print(\".\", end=\"\")\n", "\n", " emb = m(read_img(f\"./data/{MAIN_TYPE}/test/{type}/{i:03d}.png\")).detach().numpy()\n", " curr_score = .0 if Smaller_Better_Metric else 999999.0\n", " max_type = \"\"\n", " for t in types.keys():\n", "# for t in [\"good\", \"bad\"]:\n", " score = compare_embeddings(emb, types[t], euclidean_distance_metric)\n", " \n", " if Smaller_Better_Metric:\n", " if score > curr_score:\n", " curr_score = score\n", " max_type = t\n", " else:\n", " if score < curr_score:\n", " curr_score = score\n", " max_type = t\n", " pass\n", " predictions.append(max_type)\n", " pass\n", " print()\n", " return np.mean([x == type for x in predictions])\n", "# return np.mean([x == (\"good\" if type == \"good\" else \"bad\") for x in predictions])\n", " pass\n", "\n", "accs = []\n", "for t in types.keys():\n", " if t == \"bad\":\n", " continue\n", " accuracy = test(t)\n", " print(f\"accuracy for {t} = {accuracy}\")\n", " accs.append(accuracy)\n", "print(f\"overall accuracy: {np.mean(accs)}\")\n", "#print(m)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "RESNET 50:\n", "Resulsts:\n", "\n", "bottle:\n", "jeweils 1,3,5 shots normal\n", "[0.5892857142857143 0.7321428571428571 0.75]\n", "\n", "inbalanced - mehr good shots 5,10,15,30 -> alle anderen nur 5\n", "[0.75 0.732 0.696 0.696]\n", "\n", "2 ways nur detektieren ob fehlerhaft oder nicht 1,3,5 shots\n", "[0.8395 0.8315 0.8031]\n", "\n", "inbalance 2 way 5,10,15,30 -> rest 5\n", "[0.8031 0.81893 0.8336 0.8031]\n", "\n", "nur fehlerklasse erkennen 1,3,5\n", "[0.7638 0.7428 0.787]\n", "\n", "\n", "cable:\n", "jeweils 1,3,5 shots normal\n", "[0.21808 0.43815 0.4321478]\n", "\n", "inbalanced - mehr good shots 5,10,15,30 -> alle anderen nur 5\n", "[0.4321478 0.432986 0.42340 0.4464635]\n", "\n", "2 ways nur detektieren ob fehlerhaft oder nicht 1,3,5 shots\n", "[0.8592 0.8772 0.8495]\n", "\n", "inbalance 2 way 5,10,15,30 -> rest 5\n", "[0.8495 0.8180 0.7460 0.6846]\n", "\n", "nur fehlerklasse erkennen 1,3,5\n", "[0.240 0.4740 0.4805]\n" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.13.1" } }, "nbformat": 4, "nbformat_minor": 4 }