diff --git a/.github/workflows/build.yml b/.github/workflows/build.yml index 7050db5..7281086 100644 --- a/.github/workflows/build.yml +++ b/.github/workflows/build.yml @@ -19,16 +19,13 @@ jobs: - name: Install LaTeX run: | sudo apt-get update - sudo apt-get install -y texlive-full biber + sudo apt-get install -y texlive-full biber latexmk # Compile the LaTeX document (first pass) - name: Compile LaTeX (first pass) run: | cd src - pdflatex -interaction=nonstopmode -halt-on-error -file-line-error main.tex - bibtex sources - pdflatex -interaction=nonstopmode -halt-on-error -file-line-error main.tex - pdflatex -interaction=nonstopmode -halt-on-error -file-line-error main.tex + latexmk -pdf -bibtex -interaction=nonstopmode main.tex # Upload the compiled PDF as an artifact - name: Upload PDF diff --git a/src/materialandmethods.tex b/src/materialandmethods.tex index a00f65a..0f94798 100644 --- a/src/materialandmethods.tex +++ b/src/materialandmethods.tex @@ -20,8 +20,7 @@ Each category comprises a set of defect-free training images and a test set of i \subsection{Methods}\label{subsec:methods} -\subsubsection{Dagster} -\subsubsection{Label-Studio} +\subsubsection{Few-Shot Learning} \subsubsection{Jupyter Notebook}\label{subsubsec:jupyternb} @@ -64,6 +63,11 @@ There are several different ResNet architectures, the most common are ResNet-18, Since the dataset is relatively small and the two class classification task is relatively easy (for such a large model) the ResNet-18 architecture is used in this practical work. +\subsubsection{CAML} +Todo +\subsubsection{P$>$M$>$F} +Todo + \subsubsection{Softmax} The Softmax function~\eqref{eq:softmax}\cite{liang2017soft} converts $n$ numbers of a vector into a probability distribution.