ploting notebooks
	
		
			
	
		
	
	
		
	
		
			All checks were successful
		
		
	
	
		
			
				
	
				Build Typst document / build_typst_documents (push) Successful in 22s
				
			
		
		
	
	
				
					
				
			
							
								
								
									
										
											BIN
										
									
								
								notebooks/CAML-bottle.png
									
									
									
									
									
										Normal file
									
								
							
							
						
						| After Width: | Height: | Size: 32 KiB | 
							
								
								
									
										
											BIN
										
									
								
								notebooks/CAML-cable.png
									
									
									
									
									
										Normal file
									
								
							
							
						
						| After Width: | Height: | Size: 36 KiB | 
							
								
								
									
										
											BIN
										
									
								
								notebooks/P>M>F-bottle-inbalanced.png
									
									
									
									
									
										Normal file
									
								
							
							
						
						| After Width: | Height: | Size: 34 KiB | 
							
								
								
									
										
											BIN
										
									
								
								notebooks/P>M>F-bottle.png
									
									
									
									
									
										Normal file
									
								
							
							
						
						| After Width: | Height: | Size: 29 KiB | 
							
								
								
									
										
											BIN
										
									
								
								notebooks/P>M>F-cable-inbalanced.png
									
									
									
									
									
										Normal file
									
								
							
							
						
						| After Width: | Height: | Size: 31 KiB | 
							
								
								
									
										
											BIN
										
									
								
								notebooks/P>M>F-cable.png
									
									
									
									
									
										Normal file
									
								
							
							
						
						| After Width: | Height: | Size: 35 KiB | 
							
								
								
									
										
											BIN
										
									
								
								notebooks/ResNet50-bottle-inbalanced.png
									
									
									
									
									
										Normal file
									
								
							
							
						
						| After Width: | Height: | Size: 35 KiB | 
							
								
								
									
										
											BIN
										
									
								
								notebooks/ResNet50-bottle.png
									
									
									
									
									
										Normal file
									
								
							
							
						
						| After Width: | Height: | Size: 37 KiB | 
							
								
								
									
										
											BIN
										
									
								
								notebooks/ResNet50-cable-inbalanced.png
									
									
									
									
									
										Normal file
									
								
							
							
						
						| After Width: | Height: | Size: 28 KiB | 
							
								
								
									
										
											BIN
										
									
								
								notebooks/ResNet50-cable.png
									
									
									
									
									
										Normal file
									
								
							
							
						
						| After Width: | Height: | Size: 34 KiB | 
| @@ -282,7 +282,7 @@ | ||||
|    "name": "python", | ||||
|    "nbconvert_exporter": "python", | ||||
|    "pygments_lexer": "ipython3", | ||||
|    "version": "3.12.4" | ||||
|    "version": "3.13.1" | ||||
|   } | ||||
|  }, | ||||
|  "nbformat": 4, | ||||
|   | ||||
| @@ -887,7 +887,7 @@ | ||||
|    "name": "python", | ||||
|    "nbconvert_exporter": "python", | ||||
|    "pygments_lexer": "ipython3", | ||||
|    "version": "3.12.4" | ||||
|    "version": "3.13.1" | ||||
|   } | ||||
|  }, | ||||
|  "nbformat": 4, | ||||
|   | ||||
| @@ -2,14 +2,18 @@ | ||||
|  "cells": [ | ||||
|   { | ||||
|    "cell_type": "code", | ||||
|    "execution_count": 6, | ||||
|    "execution_count": 1, | ||||
|    "metadata": {}, | ||||
|    "outputs": [ | ||||
|     { | ||||
|      "name": "stdout", | ||||
|      "output_type": "stream", | ||||
|      "text": [ | ||||
|       "imports imported\n" | ||||
|      "ename": "ModuleNotFoundError", | ||||
|      "evalue": "No module named 'torchvision'", | ||||
|      "output_type": "error", | ||||
|      "traceback": [ | ||||
|       "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", | ||||
|       "\u001b[0;31mModuleNotFoundError\u001b[0m                       Traceback (most recent call last)", | ||||
|       "Cell \u001b[0;32mIn[1], line 8\u001b[0m\n\u001b[1;32m      6\u001b[0m \u001b[38;5;28;01mimport\u001b[39;00m \u001b[38;5;21;01mmatplotlib\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mpyplot\u001b[39;00m \u001b[38;5;28;01mas\u001b[39;00m \u001b[38;5;21;01mplt\u001b[39;00m\n\u001b[1;32m      7\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01mtorch\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m optim, nn\n\u001b[0;32m----> 8\u001b[0m \u001b[38;5;28;01mimport\u001b[39;00m \u001b[38;5;21;01mtorchvision\u001b[39;00m\n\u001b[1;32m      9\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01mtorchvision\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m datasets, models, transforms\n\u001b[1;32m     10\u001b[0m \u001b[38;5;28;01mimport\u001b[39;00m \u001b[38;5;21;01malbumentations\u001b[39;00m \u001b[38;5;28;01mas\u001b[39;00m \u001b[38;5;21;01mA\u001b[39;00m\n", | ||||
|       "\u001b[0;31mModuleNotFoundError\u001b[0m: No module named 'torchvision'" | ||||
|      ] | ||||
|     } | ||||
|    ], | ||||
| @@ -238,9 +242,9 @@ | ||||
|     "\n", | ||||
|     "print(resnetshotnr0)\n", | ||||
|     "# Step 2: Modify the model to output features from the layer before the fully connected layer\n", | ||||
|     "class ResNetshotnr0Embeddings(nn.Module):\n", | ||||
|     "class ResNet50Embeddings(nn.Module):\n", | ||||
|     "    def __init__(self, original_model, layernr):\n", | ||||
|     "        super(ResNetshotnr0Embeddings, self).__init__()\n", | ||||
|     "        super(ResNet50Embeddings, self).__init__()\n", | ||||
|     "        #print(list(original_model.children())[4 + layernr])\n", | ||||
|     "        #print(nn.Sequential(*list(original_model.children())[:4 + shotnr]))\n", | ||||
|     "        self.features = nn.Sequential(*list(original_model.children())[:4+layernr])\n", | ||||
| @@ -252,7 +256,7 @@ | ||||
|     "        return x\n", | ||||
|     "\n", | ||||
|     "# Instantiate the modified model\n", | ||||
|     "model = ResNetshotnr0Embeddings(resnetshotnr0, shotnr) # 3 = layer before fully connected one\n", | ||||
|     "model = ResNet50Embeddings(resnetshotnr0, shotnr) # 3 = layer before fully connected one\n", | ||||
|     "model.eval()  # Set the model to evaluation mode\n", | ||||
|     "print()\n" | ||||
|    ] | ||||
| @@ -487,9 +491,9 @@ | ||||
|    "name": "python", | ||||
|    "nbconvert_exporter": "python", | ||||
|    "pygments_lexer": "ipython3", | ||||
|    "version": "3.10.14" | ||||
|    "version": "3.13.1" | ||||
|   } | ||||
|  }, | ||||
|  "nbformat": 4, | ||||
|  "nbformat_minor": 2 | ||||
|  "nbformat_minor": 4 | ||||
| } | ||||
|   | ||||