ploting notebooks
All checks were successful
Build Typst document / build_typst_documents (push) Successful in 22s
BIN
notebooks/CAML-bottle.png
Normal file
After Width: | Height: | Size: 32 KiB |
BIN
notebooks/CAML-cable.png
Normal file
After Width: | Height: | Size: 36 KiB |
BIN
notebooks/P>M>F-bottle-inbalanced.png
Normal file
After Width: | Height: | Size: 34 KiB |
BIN
notebooks/P>M>F-bottle.png
Normal file
After Width: | Height: | Size: 29 KiB |
BIN
notebooks/P>M>F-cable-inbalanced.png
Normal file
After Width: | Height: | Size: 31 KiB |
BIN
notebooks/P>M>F-cable.png
Normal file
After Width: | Height: | Size: 35 KiB |
BIN
notebooks/ResNet50-bottle-inbalanced.png
Normal file
After Width: | Height: | Size: 35 KiB |
BIN
notebooks/ResNet50-bottle.png
Normal file
After Width: | Height: | Size: 37 KiB |
BIN
notebooks/ResNet50-cable-inbalanced.png
Normal file
After Width: | Height: | Size: 28 KiB |
BIN
notebooks/ResNet50-cable.png
Normal file
After Width: | Height: | Size: 34 KiB |
@ -282,7 +282,7 @@
|
|||||||
"name": "python",
|
"name": "python",
|
||||||
"nbconvert_exporter": "python",
|
"nbconvert_exporter": "python",
|
||||||
"pygments_lexer": "ipython3",
|
"pygments_lexer": "ipython3",
|
||||||
"version": "3.12.4"
|
"version": "3.13.1"
|
||||||
}
|
}
|
||||||
},
|
},
|
||||||
"nbformat": 4,
|
"nbformat": 4,
|
||||||
|
@ -887,7 +887,7 @@
|
|||||||
"name": "python",
|
"name": "python",
|
||||||
"nbconvert_exporter": "python",
|
"nbconvert_exporter": "python",
|
||||||
"pygments_lexer": "ipython3",
|
"pygments_lexer": "ipython3",
|
||||||
"version": "3.12.4"
|
"version": "3.13.1"
|
||||||
}
|
}
|
||||||
},
|
},
|
||||||
"nbformat": 4,
|
"nbformat": 4,
|
||||||
|
@ -2,14 +2,18 @@
|
|||||||
"cells": [
|
"cells": [
|
||||||
{
|
{
|
||||||
"cell_type": "code",
|
"cell_type": "code",
|
||||||
"execution_count": 6,
|
"execution_count": 1,
|
||||||
"metadata": {},
|
"metadata": {},
|
||||||
"outputs": [
|
"outputs": [
|
||||||
{
|
{
|
||||||
"name": "stdout",
|
"ename": "ModuleNotFoundError",
|
||||||
"output_type": "stream",
|
"evalue": "No module named 'torchvision'",
|
||||||
"text": [
|
"output_type": "error",
|
||||||
"imports imported\n"
|
"traceback": [
|
||||||
|
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
|
||||||
|
"\u001b[0;31mModuleNotFoundError\u001b[0m Traceback (most recent call last)",
|
||||||
|
"Cell \u001b[0;32mIn[1], line 8\u001b[0m\n\u001b[1;32m 6\u001b[0m \u001b[38;5;28;01mimport\u001b[39;00m \u001b[38;5;21;01mmatplotlib\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mpyplot\u001b[39;00m \u001b[38;5;28;01mas\u001b[39;00m \u001b[38;5;21;01mplt\u001b[39;00m\n\u001b[1;32m 7\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01mtorch\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m optim, nn\n\u001b[0;32m----> 8\u001b[0m \u001b[38;5;28;01mimport\u001b[39;00m \u001b[38;5;21;01mtorchvision\u001b[39;00m\n\u001b[1;32m 9\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01mtorchvision\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m datasets, models, transforms\n\u001b[1;32m 10\u001b[0m \u001b[38;5;28;01mimport\u001b[39;00m \u001b[38;5;21;01malbumentations\u001b[39;00m \u001b[38;5;28;01mas\u001b[39;00m \u001b[38;5;21;01mA\u001b[39;00m\n",
|
||||||
|
"\u001b[0;31mModuleNotFoundError\u001b[0m: No module named 'torchvision'"
|
||||||
]
|
]
|
||||||
}
|
}
|
||||||
],
|
],
|
||||||
@ -238,9 +242,9 @@
|
|||||||
"\n",
|
"\n",
|
||||||
"print(resnetshotnr0)\n",
|
"print(resnetshotnr0)\n",
|
||||||
"# Step 2: Modify the model to output features from the layer before the fully connected layer\n",
|
"# Step 2: Modify the model to output features from the layer before the fully connected layer\n",
|
||||||
"class ResNetshotnr0Embeddings(nn.Module):\n",
|
"class ResNet50Embeddings(nn.Module):\n",
|
||||||
" def __init__(self, original_model, layernr):\n",
|
" def __init__(self, original_model, layernr):\n",
|
||||||
" super(ResNetshotnr0Embeddings, self).__init__()\n",
|
" super(ResNet50Embeddings, self).__init__()\n",
|
||||||
" #print(list(original_model.children())[4 + layernr])\n",
|
" #print(list(original_model.children())[4 + layernr])\n",
|
||||||
" #print(nn.Sequential(*list(original_model.children())[:4 + shotnr]))\n",
|
" #print(nn.Sequential(*list(original_model.children())[:4 + shotnr]))\n",
|
||||||
" self.features = nn.Sequential(*list(original_model.children())[:4+layernr])\n",
|
" self.features = nn.Sequential(*list(original_model.children())[:4+layernr])\n",
|
||||||
@ -252,7 +256,7 @@
|
|||||||
" return x\n",
|
" return x\n",
|
||||||
"\n",
|
"\n",
|
||||||
"# Instantiate the modified model\n",
|
"# Instantiate the modified model\n",
|
||||||
"model = ResNetshotnr0Embeddings(resnetshotnr0, shotnr) # 3 = layer before fully connected one\n",
|
"model = ResNet50Embeddings(resnetshotnr0, shotnr) # 3 = layer before fully connected one\n",
|
||||||
"model.eval() # Set the model to evaluation mode\n",
|
"model.eval() # Set the model to evaluation mode\n",
|
||||||
"print()\n"
|
"print()\n"
|
||||||
]
|
]
|
||||||
@ -487,9 +491,9 @@
|
|||||||
"name": "python",
|
"name": "python",
|
||||||
"nbconvert_exporter": "python",
|
"nbconvert_exporter": "python",
|
||||||
"pygments_lexer": "ipython3",
|
"pygments_lexer": "ipython3",
|
||||||
"version": "3.10.14"
|
"version": "3.13.1"
|
||||||
}
|
}
|
||||||
},
|
},
|
||||||
"nbformat": 4,
|
"nbformat": 4,
|
||||||
"nbformat_minor": 2
|
"nbformat_minor": 4
|
||||||
}
|
}
|
||||||
|