From 595878b4acb5ace532294820596b53af6f7dd6a3 Mon Sep 17 00:00:00 2001 From: lukas-heiligenbrunner Date: Wed, 2 Oct 2024 18:00:07 +0200 Subject: [PATCH] add sources for patchcore and efficientaD --- src/materialandmethods.tex | 10 ++++++++++ src/sources.bib | 20 ++++++++++++++++++++ 2 files changed, 30 insertions(+) diff --git a/src/materialandmethods.tex b/src/materialandmethods.tex index 0f94798..bdc5497 100644 --- a/src/materialandmethods.tex +++ b/src/materialandmethods.tex @@ -22,6 +22,16 @@ Each category comprises a set of defect-free training images and a test set of i \subsubsection{Few-Shot Learning} +\subsubsection{Patchcore} + +%todo also show values how they perform on MVTec AD + +\subsubsection{EfficientAD} +todo stuff~\cite{patchcorepaper} +% https://arxiv.org/pdf/2106.08265 +todo stuff\cite{efficientADpaper} +% https://arxiv.org/pdf/2303.14535 + \subsubsection{Jupyter Notebook}\label{subsubsec:jupyternb} A Jupyter notebook is a shareable document which combines code and its output, text and visualizations. diff --git a/src/sources.bib b/src/sources.bib index 2b285ad..9a816a3 100644 --- a/src/sources.bib +++ b/src/sources.bib @@ -15,3 +15,23 @@ volume = {14}, year = {1952} } + +@misc{efficientADpaper, + title={EfficientAD: Accurate Visual Anomaly Detection at Millisecond-Level Latencies}, + author={Kilian Batzner and Lars Heckler and Rebecca König}, + year={2024}, + eprint={2303.14535}, + archivePrefix={arXiv}, + primaryClass={cs.CV}, + url={https://arxiv.org/abs/2303.14535}, +} + +@misc{patchcorepaper, + title={Towards Total Recall in Industrial Anomaly Detection}, + author={Karsten Roth and Latha Pemula and Joaquin Zepeda and Bernhard Schölkopf and Thomas Brox and Peter Gehler}, + year={2022}, + eprint={2106.08265}, + archivePrefix={arXiv}, + primaryClass={cs.CV}, + url={https://arxiv.org/abs/2106.08265}, +} \ No newline at end of file