bachelor-thesis/typstalt/sources.bib

111 lines
3.8 KiB
BibTeX
Raw Normal View History

2024-10-28 11:43:59 +00:00
%! Author = lukas
%! Date = 4/9/24
@InProceedings{crossentropy,
ISSN = {00359246},
URL = {http://www.jstor.org/stable/2984087},
abstract = {This paper deals first with the relationship between the theory of probability and the theory of rational behaviour. A method is then suggested for encouraging people to make accurate probability estimates, a connection with the theory of information being mentioned. Finally Wald's theory of statistical decision functions is summarised and generalised and its relation to the theory of rational behaviour is discussed.},
author = {I. J. Good},
journal = {Journal of the Royal Statistical Society. Series B (Methodological)},
number = {1},
pages = {107--114},
publisher = {[Royal Statistical Society, Wiley]},
title = {Rational Decisions},
urldate = {2024-05-23},
volume = {14},
year = {1952}
}
@misc{efficientADpaper,
title={EfficientAD: Accurate Visual Anomaly Detection at Millisecond-Level Latencies},
author={Kilian Batzner and Lars Heckler and Rebecca König},
year={2024},
eprint={2303.14535},
archivePrefix={arXiv},
primaryClass={cs.CV},
url={https://arxiv.org/abs/2303.14535},
}
@misc{patchcorepaper,
title={Towards Total Recall in Industrial Anomaly Detection},
author={Karsten Roth and Latha Pemula and Joaquin Zepeda and Bernhard Schölkopf and Thomas Brox and Peter Gehler},
year={2022},
eprint={2106.08265},
archivePrefix={arXiv},
primaryClass={cs.CV},
url={https://arxiv.org/abs/2106.08265},
}
@misc{jupyter,
author = {},
title = {{Project Jupyter Documentation}},
howpublished = "\url{https://docs.jupyter.org/en/latest/}",
year = {2024},
note = "[Online; accessed 13-May-2024]"
}
2024-10-28 11:43:59 +00:00
@misc{cnnintro,
title={An Introduction to Convolutional Neural Networks},
author={Keiron O'Shea and Ryan Nash},
year={2015},
eprint={1511.08458},
archivePrefix={arXiv},
primaryClass={cs.NE}
}
2024-10-28 11:43:59 +00:00
@misc{cnnarchitectureimg,
author = {},
title = {{What are convolutional neural networks?}},
howpublished = "\url{https://cointelegraph.com/explained/what-are-convolutional-neural-networks}",
year = {2024},
note = "[Online; accessed 12-April-2024]"
}
2024-10-28 11:43:59 +00:00
@misc{datasetsampleimg,
author = {},
title = {{The MVTec anomaly detection dataset (MVTec AD)}},
howpublished = "\url{https://www.mvtec.com/company/research/datasets/mvtec-ad}",
year = {2024},
note = "[Online; accessed 12-April-2024]"
}
@inproceedings{liang2017soft,
title={Soft-margin softmax for deep classification},
author={Liang, Xuezhi and Wang, Xiaobo and Lei, Zhen and Liao, Shengcai and Li, Stan Z},
booktitle={International Conference on Neural Information Processing},
pages={413--421},
year={2017},
organization={Springer}
}
2024-10-28 11:43:59 +00:00
@inbook{Boltzmann,
place = {Cambridge},
series = {Cambridge Library Collection - Physical Sciences},
title = {Studien über das Gleichgewicht der lebendigen Kraft zwischen bewegten materiellen Punkten},
booktitle = {Wissenschaftliche Abhandlungen},
publisher = {Cambridge University Press},
author = {Boltzmann, Ludwig},
editor = {Hasenöhrl, FriedrichEditor},
year = {2012},
pages = {4996},
collection = {Cambridge Library Collection - Physical Sciences}, key = {value},}
@misc{resnet,
title={Deep Residual Learning for Image Recognition},
author={Kaiming He and Xiangyu Zhang and Shaoqing Ren and Jian Sun},
year={2015},
eprint={1512.03385},
archivePrefix={arXiv},
primaryClass={cs.CV}
}
2024-10-28 15:25:02 +00:00
@misc{snell2017prototypicalnetworksfewshotlearning,
title={Prototypical Networks for Few-shot Learning},
author={Jake Snell and Kevin Swersky and Richard S. Zemel},
year={2017},
eprint={1703.05175},
archivePrefix={arXiv},
primaryClass={cs.LG},
url={https://arxiv.org/abs/1703.05175},
}