bachelor-thesis/sources.bib

230 lines
7.8 KiB
BibTeX
Raw Normal View History

2024-10-28 12:43:59 +01:00
%! Author = lukas
%! Date = 4/9/24
@InProceedings{crossentropy,
ISSN = {00359246},
URL = {http://www.jstor.org/stable/2984087},
abstract = {This paper deals first with the relationship between the theory of probability and the theory of rational behaviour. A method is then suggested for encouraging people to make accurate probability estimates, a connection with the theory of information being mentioned. Finally Wald's theory of statistical decision functions is summarised and generalised and its relation to the theory of rational behaviour is discussed.},
author = {I. J. Good},
journal = {Journal of the Royal Statistical Society. Series B (Methodological)},
number = {1},
pages = {107--114},
publisher = {[Royal Statistical Society, Wiley]},
title = {Rational Decisions},
urldate = {2024-05-23},
volume = {14},
year = {1952}
}
@misc{efficientADpaper,
title={EfficientAD: Accurate Visual Anomaly Detection at Millisecond-Level Latencies},
author={Kilian Batzner and Lars Heckler and Rebecca König},
year={2024},
eprint={2303.14535},
archivePrefix={arXiv},
primaryClass={cs.CV},
url={https://arxiv.org/abs/2303.14535},
}
@misc{patchcorepaper,
title={Towards Total Recall in Industrial Anomaly Detection},
author={Karsten Roth and Latha Pemula and Joaquin Zepeda and Bernhard Schölkopf and Thomas Brox and Peter Gehler},
year={2022},
eprint={2106.08265},
archivePrefix={arXiv},
primaryClass={cs.CV},
url={https://arxiv.org/abs/2106.08265},
}
@misc{jupyter,
author = {},
title = {{Project Jupyter Documentation}},
howpublished = "\url{https://docs.jupyter.org/en/latest/}",
year = {2024},
note = "[Online; accessed 13-May-2024]"
}
2024-10-28 12:43:59 +01:00
@misc{cnnintro,
title={An Introduction to Convolutional Neural Networks},
author={Keiron O'Shea and Ryan Nash},
year={2015},
eprint={1511.08458},
archivePrefix={arXiv},
primaryClass={cs.NE}
}
2024-10-28 12:43:59 +01:00
@misc{cnnarchitectureimg,
author = {},
title = {{What are convolutional neural networks?}},
howpublished = "\url{https://cointelegraph.com/explained/what-are-convolutional-neural-networks}",
year = {2024},
note = "[Online; accessed 12-April-2024]"
}
2024-10-28 12:43:59 +01:00
@misc{datasetsampleimg,
author = {},
title = {{The MVTec anomaly detection dataset (MVTec AD)}},
howpublished = "\url{https://www.mvtec.com/company/research/datasets/mvtec-ad}",
year = {2024},
note = "[Online; accessed 12-April-2024]"
}
@inproceedings{liang2017soft,
title={Soft-margin softmax for deep classification},
author={Liang, Xuezhi and Wang, Xiaobo and Lei, Zhen and Liao, Shengcai and Li, Stan Z},
booktitle={International Conference on Neural Information Processing},
pages={413--421},
year={2017},
organization={Springer}
}
2024-10-28 12:43:59 +01:00
@inbook{Boltzmann,
place = {Cambridge},
series = {Cambridge Library Collection - Physical Sciences},
title = {Studien über das Gleichgewicht der lebendigen Kraft zwischen bewegten materiellen Punkten},
booktitle = {Wissenschaftliche Abhandlungen},
publisher = {Cambridge University Press},
author = {Boltzmann, Ludwig},
editor = {Hasenöhrl, FriedrichEditor},
year = {2012},
pages = {4996},
collection = {Cambridge Library Collection - Physical Sciences}, key = {value},}
@misc{resnet,
title={Deep Residual Learning for Image Recognition},
author={Kaiming He and Xiangyu Zhang and Shaoqing Ren and Jian Sun},
year={2015},
eprint={1512.03385},
archivePrefix={arXiv},
primaryClass={cs.CV}
}
2024-10-28 16:25:02 +01:00
@misc{snell2017prototypicalnetworksfewshotlearning,
title={Prototypical Networks for Few-shot Learning},
author={Jake Snell and Kevin Swersky and Richard S. Zemel},
year={2017},
eprint={1703.05175},
archivePrefix={arXiv},
primaryClass={cs.LG},
url={https://arxiv.org/abs/1703.05175},
}
@misc{caml_paper,
title={Context-Aware Meta-Learning},
author={Christopher Fifty and Dennis Duan and Ronald G. Junkins and Ehsan Amid and Jure Leskovec and Christopher Re and Sebastian Thrun},
year={2024},
eprint={2310.10971},
archivePrefix={arXiv},
primaryClass={cs.LG},
url={https://arxiv.org/abs/2310.10971},
}
@misc{handsonaiI,
author = {Andreas Schörgenhumer, Bernhard Schäfl, Michael Widrich},
title = {Lecture notes in Hands On AI I, Unit 4 \& 5},
month = {October},
year = {2021},
publisher={Johannes Kepler Universität Linz}
}
2024-12-31 12:23:53 +01:00
@misc{pmfpaper,
title={Pushing the Limits of Simple Pipelines for Few-Shot Learning: External Data and Fine-Tuning Make a Difference},
author={Shell Xu Hu and Da Li and Jan Stühmer and Minyoung Kim and Timothy M. Hospedales},
year={2022},
eprint={2204.07305},
archivePrefix={arXiv},
primaryClass={cs.CV},
url={https://arxiv.org/abs/2204.07305},
}
2025-01-13 22:36:44 +01:00
@misc{peng2023sgvaclipsemanticguidedvisualadapting,
title={SgVA-CLIP: Semantic-guided Visual Adapting of Vision-Language Models for Few-shot Image Classification},
author={Fang Peng and Xiaoshan Yang and Linhui Xiao and Yaowei Wang and Changsheng Xu},
year={2023},
eprint={2211.16191},
archivePrefix={arXiv},
primaryClass={cs.CV},
url={https://arxiv.org/abs/2211.16191},
}
@misc{singh2022transductivedecoupledvariationalinference,
title={Transductive Decoupled Variational Inference for Few-Shot Classification},
author={Anuj Singh and Hadi Jamali-Rad},
year={2022},
eprint={2208.10559},
archivePrefix={arXiv},
primaryClass={cs.CV},
url={https://arxiv.org/abs/2208.10559},
}
@misc{chen2024unifiedanomalysynthesisstrategy,
title={A Unified Anomaly Synthesis Strategy with Gradient Ascent for Industrial Anomaly Detection and Localization},
author={Qiyu Chen and Huiyuan Luo and Chengkan Lv and Zhengtao Zhang},
year={2024},
eprint={2407.09359},
archivePrefix={arXiv},
primaryClass={cs.CV},
url={https://arxiv.org/abs/2407.09359},
}
@misc{shalam2022selfoptimaltransportfeaturetransform,
title={The Self-Optimal-Transport Feature Transform},
author={Daniel Shalam and Simon Korman},
year={2022},
eprint={2204.03065},
archivePrefix={arXiv},
primaryClass={cs.CV},
url={https://arxiv.org/abs/2204.03065},
}
@misc{parnami2022learningexamplessummaryapproaches,
title={Learning from Few Examples: A Summary of Approaches to Few-Shot Learning},
author={Archit Parnami and Minwoo Lee},
year={2022},
eprint={2203.04291},
archivePrefix={arXiv},
primaryClass={cs.LG},
url={https://arxiv.org/abs/2203.04291},
}
@misc{chowdhury2021fewshotimageclassificationjust,
title={Few-shot Image Classification: Just Use a Library of Pre-trained Feature Extractors and a Simple Classifier},
author={Arkabandhu Chowdhury and Mingchao Jiang and Swarat Chaudhuri and Chris Jermaine},
year={2021},
eprint={2101.00562},
archivePrefix={arXiv},
primaryClass={cs.CV},
url={https://arxiv.org/abs/2101.00562},
}
@book{analysisrudin,
title = {Principles of mathematical analysis},
author = {Walter Rudin},
isbn = {},
series = {Mathermatics Series},
year = {1976},
publisher = {Mc Graw Hill},
keywords = {mathematics}
}
@book{dataminingbook,
title = {Data Mining: Concepts and Techniques},
author = {Jiawei Han, Micheline Kamber, Jian Pei},
isbn = {},
series = {The Morgan Kaufmann Series in Data Management Systems},
year = {2012},
publisher = {Morgran Kaufmann},
keywords = {mathematics}
}
@book{Goodfellow-et-al-2016,
title={Deep Learning},
author={Ian Goodfellow and Yoshua Bengio and Aaron Courville},
publisher={MIT Press},
note={\url{http://www.deeplearningbook.org}},
year={2016}
}