The back end is provided by a set of RESTful endpoints and the responsive React based front end is built using [Material-UI](https://material-ui.com/).
The project is configured to upload over a serial connection by default. You can change this to use OTA updates by uncommenting the relevant lines in ['platformio.ini'](platformio.ini).
The interface has been configured with create-react-app and react-app-rewired so the build can customized for the target device. The large artefacts are gzipped and source maps and service worker are excluded from the production build. This reduces the production build to around ~150k, which easily fits on the device.
The interface will be automatically built by PlatformIO before it builds the firmware. The project can be configured to serve the interface from either PROGMEM or SPIFFS as your project requires. The default configuration is to serve the content from PROGMEM, serving from SPIFFS requires an additional upload step which is documented below.
By default, the project is configured to serve the interface from PROGMEM. This can be disabled by removing the -D PROGMEM_WWW build flag in ['platformio.ini'](platformio.ini) and re-building the firmware. If this your desired approach you must manually [upload the file system image](#uploading-the-file-system-image) to the device.
The interface will consume ~150k of program space which can be problematic if you already have a large binary artefact or if you have added large dependencies to the interface. The ESP32 binaries are fairly large in there simplest form so the addition of the interface resources requires us to use special partitioning for the ESP32.
When building using the "node32s" profile, the project uses the custom [min_spiffs.csv](https://github.com/espressif/arduino-esp32/blob/master/tools/partitions/min_spiffs.csv) partitioning mode. You may want to disable this if you are manually uploading the file system image:
If service content from SPIFFS, disable the PROGMEM_WWW build flag and build the project. The compiled interface will be copied to [data/](data) by the build process and may now be uploaded to the device by pressing the "Upload File System image" button:
You can run a development server locally to allow you preview changes to the front end without the need to upload a file system image to the device after each change.
Change to the ['interface'](interface) directory with your bash shell (or Git Bash) and use the standard commands you would with any react app built with create-react-app:
```bash
cd interface
```
Install the npm dependencies, if required and start the development server:
> **Tip**: You can (optionally) speed up the build by commenting out the call to build_interface.py under "extra scripts" during local development. This will prevent the npm process from building the production release every time the firmware is compiled significantly decreasing the build time.
The interface has a development environment which is enabled when running the development server using `npm start`. The environment file can be found in ['interface/.env.development'](interface/.env.development) and contains the HTTP root URL and the WebSocket root URL:
You can enable CORS on the back end by uncommenting the -D ENABLE_CORS build flag in ['platformio.ini'](platformio.ini) then re-building and uploading the firmware to the device. The default settings assume you will be accessing the development server on the default port on [http://localhost:3000](http://localhost:3000) this can also be changed if required:
The firmware has built-in factory settings which act as default values for the various configurable services where settings are not saved on the file system. These settings can be overridden using the build flags defined in [factory_settings.ini](factory_settings.ini).
It is recommended that you change the user credentials from their defaults better protect your device. You can do this in the user interface, or by modifying [factory_settings.ini](factory_settings.ini) as mentioned above.
### Customizing the factory time zone setting
Changing factory time zone setting is a common requirement. This requires a little effort because the time zone name and POSIX format are stored as separate values for the moment. The time zone names and POSIX formats are contained in the UI code in [TZ.ts](interface/src/ntp/TZ.ts). Take the appropriate pair of values from there, for example, for Los Angeles you would use:
If not overridden with a build flag, the firmware will use the device ID to generate factory defaults for settings such as the JWT secret and MQTT client ID.
> **Tip**: Random values are generally better defaults for these settings, so it is recommended you leave these flags undefined.
This project supports ESP8266 and ESP32 platforms. To support OTA programming, enough free space to upload the new sketch and file system image will be required. It is recommended that a board with at least 2mb of flash is used.
The settings file ['platformio.ini'](platformio.ini) configures the supported environments. Modify these, or add new environments for the devides you need to support. The default environments are as follows:
If you want to build for a different device, all you need to do is re-configure ['platformio.ini'](platformio.ini) and select an alternative environment by modifying the default_envs variable. Building for the common esp32 "node32s" board for example:
The app can be easily themed by editing the [MaterialUI theme](https://material-ui.com/customization/theming/). Edit the theme in ['interface/src/CustomMuiTheme.tsx'](interface/src/CustomMuiTheme.tsx) as you desire. For example, here is a dark theme:
You can replace the app icon is located at ['interface/public/app/icon.png'](interface/public/app/icon.png) with one of your preference. A 256 x 256 PNG is recommended for best compatibility.
The app name displayed on the login page and on the menu bar can be modified by editing the REACT_APP_NAME property in ['interface/.env'](interface/.env)
There is also a manifest file which contains the app name to use when adding the app to a mobile device, so you may wish to also edit ['interface/public/app/manifest.json'](interface/public/app/manifest.json):
The back end is a set of REST endpoints hosted by a [ESPAsyncWebServer](https://github.com/me-no-dev/ESPAsyncWebServer) instance. The ['lib/framework'](lib/framework) directory contains the majority of the back end code. The framework contains of a number of useful utility classes which you can use when extending it. The project also comes with a demo project to give you some help getting started.
The framework's source is split up by feature, for example [WiFiScanner.h](lib/framework/WiFiScanner.h) implements the end points for scanning for available networks where as [WiFiSettingsService.h](lib/framework/WiFiSettingsService.h) handles configuring the WiFi settings and managing the WiFi connection.
The ['src/main.cpp'](src/main.cpp) file constructs the webserver and initializes the framework. You can add endpoints to the server here to support your IoT project. The main loop is also accessable so you can run your own code easily.
The framework promotes a modular design and exposes features you may re-use to speed up the development of your project. Where possible it is recommended that you use the features the frameworks supplies. These are documented in this section and a comprehensive example is provided by the demo project.
The [StatefulService.h](lib/framework/StatefulService.h) class is a responsible for managing state and interfacing with code which wants to change or respond to changes in that state. You can define a data class to hold some state, then build a StatefulService class to manage its state:
An "originId" is passed to the update handler which may be used to identify the origin of the update. The default origin values the framework provides are:
Origin | Description
--------------------- | -----------
http | An update sent over REST (HttpEndpoint)
mqtt | An update sent over MQTT (MqttPubSub)
websocket:{clientId} | An update sent over WebSocket (WebSocketRxTx)
StatefulService exposes a read function which you may use to safely read the state. This function takes care of protecting against parallel access to the state in multi-core enviornments such as the ESP32.
```cpp
lightStateService.read([&](LightState& state) {
digitalWrite(LED_PIN, state.on ? HIGH : LOW); // apply the state update to the LED_PIN
StatefulService also exposes an update function which allows the caller to update the state with a callback. This approach automatically calls the registered update handlers when complete. The example below turns on the lights using the arbitrary origin "timer":
When transmitting state over HTTP, WebSockets, or MQTT it must to be marshalled into a serializable form (JSON). The framework uses ArduinoJson for serialization and the functions defined in [JsonSerializer.h](lib/framework/JsonSerializer.h) and [JsonDeserializer.h](lib/framework/JsonDeserializer.h) facilitate this.
The framework provides an [HttpEndpoint.h](lib/framework/HttpEndpoint.h) class which may be used to register GET and POST handlers to read and update the state over HTTP. You may construct an HttpEndpoint as a part of the StatefulService or separately if you prefer.
Endpoint security is provided by authentication predicates which are [documented below](#security-features). The SecurityManager and authentication predicate may be provided if a secure endpoint is required. The demo project shows how endpoints can be secured.
#### Persistence
[FSPersistence.h](lib/framework/FSPersistence.h) allows you to save state to the filesystem. FSPersistence automatically writes changes to the file system when state is updated. This feature can be disabled by calling `disableUpdateHandler()` if manual control of persistence is required.
The code below demonstrates how to extend the LightStateService class to provide persistence:
[WebSocketTxRx.h](lib/framework/WebSocketTxRx.h) allows you to read and update state over a WebSocket connection. WebSocketTxRx automatically pushes changes to all connected clients when state is updated.
The code below demonstrates how to extend the LightStateService class to provide an unsecured WebSocket:
WebSocket security is provided by authentication predicates which are [documented below](#security-features). The SecurityManager and authentication predicate may be provided if a secure WebSocket is required. The demo project shows how WebSockets can be secured.
The framework includes an MQTT client which can be configured via the UI. MQTT requirements will differ from project to project so the framework exposes the client for you to use as you see fit. The framework does however provide a utility to interface StatefulService to a pair of pub/sub (state/set) topics. This utility can be used to synchronize state with software such as Home Assistant.
[MqttPubSub.h](lib/framework/MqttPubSub.h) allows you to publish and subscribe to synchronize state over a pair of MQTT topics. MqttPubSub automatically pushes changes to the "pub" topic and reads updates from the "sub" topic.
The code below demonstrates how to extend the LightStateService class to interface with MQTT:
```cpp
class LightStateService : public StatefulService<LightState> {
The demo project allows the user to modify the MQTT topics via the UI so they can be changed without re-flashing the firmware.
### Security features
The framework has security features to prevent unauthorized use of the device. This is driven by [SecurityManager.h](lib/framework/SecurityManager.h).
On successful authentication, the /rest/signIn endpoint issues a [JSON Web Token (JWT)](https://jwt.io/) which is then sent using Bearer Authentication. The framework come with built-in predicates for verifying a users access privileges. The built in AuthenticationPredicates can be found in [SecurityManager.h](lib/framework/SecurityManager.h) and are as follows:
Predicate | Description
-------------------- | -----------
NONE_REQUIRED | No authentication is required.
IS_AUTHENTICATED | Any authenticated principal is permitted.
IS_ADMIN | The authenticated principal must be an admin.
You can use the security manager to wrap any request handler function with an authentication predicate:
The core features use the [StatefulService.h](lib/framework/StatefulService.h) class and can therefore you can change settings or observe changes to settings through the read/update API.