| 
									
										
										
										
											2023-03-14 19:05:25 +01:00
										 |  |  | \documentclass[usenames,dvipsnames]{beamer} | 
					
						
							|  |  |  | %----------------------------------------------------------------------------------------
 | 
					
						
							|  |  |  | %	Struktur und Pointer Referat
 | 
					
						
							|  |  |  | %   20.04.2020
 | 
					
						
							|  |  |  | %----------------------------------------------------------------------------------------
 | 
					
						
							| 
									
										
										
										
											2023-03-23 13:46:01 +01:00
										 |  |  | \usetheme[nofirafonts]{focus} | 
					
						
							| 
									
										
										
										
											2023-03-14 19:05:25 +01:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2023-03-20 17:42:30 +01:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2023-03-14 19:05:25 +01:00
										 |  |  | \usepackage[utf8]{inputenc} | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | \usepackage{booktabs} | 
					
						
							|  |  |  | \usepackage{amsmath} | 
					
						
							| 
									
										
										
										
											2023-03-20 17:42:30 +01:00
										 |  |  | \usepackage{amssymb} | 
					
						
							|  |  |  | \usepackage{amsfonts} | 
					
						
							|  |  |  | \usepackage{bbm} | 
					
						
							| 
									
										
										
										
											2023-03-14 19:05:25 +01:00
										 |  |  | \usepackage{hyperref} | 
					
						
							|  |  |  | \usepackage{graphicx} | 
					
						
							|  |  |  | \usepackage{xcolor} | 
					
						
							| 
									
										
										
										
											2023-03-20 17:42:30 +01:00
										 |  |  | \usepackage{mathtools} | 
					
						
							| 
									
										
										
										
											2023-03-14 19:05:25 +01:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2023-03-23 13:46:01 +01:00
										 |  |  | \RequirePackage[T1]{fontenc} | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | \PassOptionsToPackage{sfdefault}{FiraSans} | 
					
						
							|  |  |  | \RequirePackage{FiraSans} | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | \RequirePackage{FiraMono} | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2023-03-14 19:05:25 +01:00
										 |  |  | % Farbdefinitionen
 | 
					
						
							|  |  |  | \definecolor{backgroundcoloreq}{RGB}{180,140,0} | 
					
						
							|  |  |  | \definecolor{codegreen}{rgb}{0,0.6,0} | 
					
						
							|  |  |  | \definecolor{codegray}{rgb}{0.5,0.5,0.5} | 
					
						
							|  |  |  | \definecolor{codepurple}{rgb}{0.58,0,0.82} | 
					
						
							|  |  |  | \definecolor{codeorange}{RGB}{190,100,0} | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2023-03-20 17:42:30 +01:00
										 |  |  | % we wanna use default caleographic alphabet
 | 
					
						
							|  |  |  | \DeclareMathAlphabet{\mathcal}{OMS}{cmbrs}{m}{n} | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2023-03-14 19:05:25 +01:00
										 |  |  | 
 | 
					
						
							|  |  |  | %----------------------------------------------------------------------------------------
 | 
					
						
							|  |  |  | %	 TITLE SLIDE
 | 
					
						
							|  |  |  | %----------------------------------------------------------------------------------------
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | \title{Cross-Model Pseudo-Labeling} | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | \subtitle{for Semi-Supervised Action Recognition} | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | \author{Lukas Heiligenbrunner} | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | \date{\today} | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | %------------------------------------------------
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | \begin{document} | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | %------------------------------------------------
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     \begin{frame} | 
					
						
							|  |  |  |         \maketitle | 
					
						
							|  |  |  |     \end{frame} | 
					
						
							| 
									
										
										
										
											2023-03-20 11:39:36 +01:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2023-03-18 23:15:19 +01:00
										 |  |  | 
 | 
					
						
							|  |  |  | %----------------------------------------------------------------------------------------
 | 
					
						
							|  |  |  | %	 SECTION 1
 | 
					
						
							|  |  |  | %----------------------------------------------------------------------------------------
 | 
					
						
							|  |  |  | % todo pic of action
 | 
					
						
							| 
									
										
										
										
											2023-03-20 11:39:36 +01:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2023-03-24 14:17:21 +01:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2023-03-20 17:42:30 +01:00
										 |  |  |     \section{The Goal} | 
					
						
							| 
									
										
										
										
											2023-03-18 23:15:19 +01:00
										 |  |  |     \begin{frame}{The goal} | 
					
						
							|  |  |  |         \begin{itemize} | 
					
						
							| 
									
										
										
										
											2023-03-20 17:42:30 +01:00
										 |  |  |             \item Train model | 
					
						
							|  |  |  |             \item Recognize action of person | 
					
						
							|  |  |  |             \item From video [$\approx$10sec] | 
					
						
							|  |  |  |             \item E.g.: | 
					
						
							| 
									
										
										
										
											2023-03-20 11:39:36 +01:00
										 |  |  |             \begin{itemize} | 
					
						
							|  |  |  |                 \item brushing hair | 
					
						
							|  |  |  |                 \item riding bike | 
					
						
							|  |  |  |                 \item dancing | 
					
						
							|  |  |  |                 \item playing violin | 
					
						
							|  |  |  |             \end{itemize} | 
					
						
							| 
									
										
										
										
											2023-03-20 17:42:30 +01:00
										 |  |  |             \item As generic as possible | 
					
						
							| 
									
										
										
										
											2023-03-18 23:15:19 +01:00
										 |  |  |         \end{itemize} | 
					
						
							|  |  |  |     \end{frame} | 
					
						
							| 
									
										
										
										
											2023-03-14 19:05:25 +01:00
										 |  |  | 
 | 
					
						
							|  |  |  | %----------------------------------------------------------------------------------------
 | 
					
						
							|  |  |  | %	 SECTION 2
 | 
					
						
							|  |  |  | %----------------------------------------------------------------------------------------
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     \section{The Problem} % Section title slide, unnumbered
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | %------------------------------------------------
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     \begin{frame}{Missing Labels} | 
					
						
							|  |  |  |         \begin{itemize} | 
					
						
							| 
									
										
										
										
											2023-03-18 23:15:19 +01:00
										 |  |  |             \item Supervised action recoginition | 
					
						
							| 
									
										
										
										
											2023-03-14 19:05:25 +01:00
										 |  |  |             \begin{itemize} | 
					
						
							| 
									
										
										
										
											2023-03-20 11:39:36 +01:00
										 |  |  |                 \item lots of labeled samples necessary | 
					
						
							|  |  |  |                 \item videos | 
					
						
							| 
									
										
										
										
											2023-03-14 19:05:25 +01:00
										 |  |  |             \end{itemize} | 
					
						
							| 
									
										
										
										
											2023-03-18 23:15:19 +01:00
										 |  |  |             \item Labeling Samples very expensive | 
					
						
							| 
									
										
										
										
											2023-03-14 19:05:25 +01:00
										 |  |  |             \begin{itemize} | 
					
						
							| 
									
										
										
										
											2023-03-20 11:39:36 +01:00
										 |  |  |                 \item Avoid! | 
					
						
							| 
									
										
										
										
											2023-03-14 19:05:25 +01:00
										 |  |  |             \end{itemize} | 
					
						
							| 
									
										
										
										
											2023-03-18 23:15:19 +01:00
										 |  |  |             \item Tremendous amount of unlabled data | 
					
						
							| 
									
										
										
										
											2023-03-14 19:05:25 +01:00
										 |  |  |             \begin{itemize} | 
					
						
							| 
									
										
										
										
											2023-03-20 11:39:36 +01:00
										 |  |  |                 \item YouTube | 
					
						
							| 
									
										
										
										
											2023-03-14 19:05:25 +01:00
										 |  |  |             \end{itemize} | 
					
						
							| 
									
										
										
										
											2023-03-24 14:17:21 +01:00
										 |  |  |             \item Using semi-supervised learning might be benefitial | 
					
						
							| 
									
										
										
										
											2023-03-14 19:05:25 +01:00
										 |  |  |         \end{itemize} | 
					
						
							|  |  |  |     \end{frame} | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | %------------------------------------------------
 | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2023-03-20 11:39:36 +01:00
										 |  |  |     \begin{frame}{What's all about Semi supervised?} | 
					
						
							|  |  |  |         \begin{itemize} | 
					
						
							|  |  |  |             \item Supervised learning | 
					
						
							|  |  |  |             \begin{itemize} | 
					
						
							|  |  |  |                 \item Data samples | 
					
						
							|  |  |  |                 \item Target labels | 
					
						
							|  |  |  |                 \item Each sample is associated to target label | 
					
						
							|  |  |  |             \end{itemize} | 
					
						
							|  |  |  |             \item Unsupervised learning | 
					
						
							|  |  |  |             \begin{itemize} | 
					
						
							|  |  |  |                 \item Data samples | 
					
						
							|  |  |  |                 \item target is to find patterns in data | 
					
						
							|  |  |  |                 \item without supervision | 
					
						
							|  |  |  |             \end{itemize} | 
					
						
							|  |  |  |             \item Semi-Supervised learning | 
					
						
							|  |  |  |             \begin{itemize} | 
					
						
							|  |  |  |                 \item combination of both | 
					
						
							|  |  |  |                 \item have labeled \& unlabeled data | 
					
						
							|  |  |  |                 \item labeled data guides learning process | 
					
						
							|  |  |  |                 \item unlabled helps to gain additional information | 
					
						
							|  |  |  |                 \item goal is performance improvement | 
					
						
							|  |  |  |             \end{itemize} | 
					
						
							|  |  |  |         \end{itemize} | 
					
						
							| 
									
										
										
										
											2023-03-14 19:05:25 +01:00
										 |  |  |     \end{frame} | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | %------------------------------------------------
 | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2023-03-20 11:39:36 +01:00
										 |  |  |     \begin{frame}[allowframebreaks]{What's already been done} | 
					
						
							|  |  |  |         \begin{itemize} | 
					
						
							|  |  |  |             \item Pseudo-labeling | 
					
						
							|  |  |  |             \item Train model on labeled data | 
					
						
							|  |  |  |             \begin{itemize} | 
					
						
							| 
									
										
										
										
											2023-03-24 14:17:21 +01:00
										 |  |  |                 \item Eg. 1\%/10\% of data labeled | 
					
						
							| 
									
										
										
										
											2023-03-20 11:39:36 +01:00
										 |  |  |             \end{itemize} | 
					
						
							| 
									
										
										
										
											2023-03-26 20:00:15 +02:00
										 |  |  |             \item Predict pseudo-labels from unlabeled data | 
					
						
							| 
									
										
										
										
											2023-03-24 14:17:21 +01:00
										 |  |  |             \item Confidence of prediction [Threshold] | 
					
						
							| 
									
										
										
										
											2023-03-26 20:00:15 +02:00
										 |  |  |             \item Drop/Use prediction to train model further | 
					
						
							|  |  |  |             \item Finally use pseudo-labels + 1/10\% to train main model | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2023-03-20 11:39:36 +01:00
										 |  |  |         \end{itemize} | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         \framebreak | 
					
						
							| 
									
										
										
										
											2023-03-14 19:05:25 +01:00
										 |  |  |         \begin{itemize} | 
					
						
							| 
									
										
										
										
											2023-03-20 11:39:36 +01:00
										 |  |  |             \item quantity and quality of pseudo-labels | 
					
						
							|  |  |  |             \item significant impact on main model accuracy! | 
					
						
							|  |  |  |             \item we want to improve pseudo-label framework as much as possible | 
					
						
							| 
									
										
										
										
											2023-03-14 19:05:25 +01:00
										 |  |  |         \end{itemize} | 
					
						
							|  |  |  |     \end{frame} | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | %----------------------------------------------------------------------------------------
 | 
					
						
							|  |  |  | %	 SECTION 2
 | 
					
						
							|  |  |  | %----------------------------------------------------------------------------------------
 | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2023-03-20 17:42:30 +01:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2023-03-20 11:39:36 +01:00
										 |  |  |     \section{Cross-Model Pseudo-Labeling} | 
					
						
							| 
									
										
										
										
											2023-03-14 19:05:25 +01:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2023-03-20 11:39:36 +01:00
										 |  |  |     \begin{frame}[allowframebreaks]{Papers approach} | 
					
						
							| 
									
										
										
										
											2023-03-14 19:05:25 +01:00
										 |  |  |         \begin{itemize} | 
					
						
							| 
									
										
										
										
											2023-03-20 11:39:36 +01:00
										 |  |  |             \item Based on complementary-representations of model | 
					
						
							|  |  |  |             \item Models of different size | 
					
						
							|  |  |  |             \item Different structural-bias $\rightarrow$ different category-wise performance | 
					
						
							|  |  |  |             \item Small model | 
					
						
							|  |  |  |             \begin{itemize} | 
					
						
							|  |  |  |                 \item lower capacity | 
					
						
							|  |  |  |                 \item better captures temporal dynamics in recognizing actions | 
					
						
							| 
									
										
										
										
											2023-03-24 14:17:21 +01:00
										 |  |  |                 \item scene changes/motion over time | 
					
						
							| 
									
										
										
										
											2023-03-20 11:39:36 +01:00
										 |  |  |             \end{itemize} | 
					
						
							|  |  |  |             \item Large model | 
					
						
							| 
									
										
										
										
											2023-03-14 19:05:25 +01:00
										 |  |  |             \begin{itemize} | 
					
						
							| 
									
										
										
										
											2023-03-20 11:39:36 +01:00
										 |  |  |                 \item better learns spatial semantics | 
					
						
							|  |  |  |                 \item to distinguish different action instances | 
					
						
							| 
									
										
										
										
											2023-03-24 14:17:21 +01:00
										 |  |  |                 \item localize/identify objects in specific scene | 
					
						
							| 
									
										
										
										
											2023-03-14 19:05:25 +01:00
										 |  |  |             \end{itemize} | 
					
						
							|  |  |  |         \end{itemize} | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         \framebreak | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         \begin{itemize} | 
					
						
							| 
									
										
										
										
											2023-03-20 11:39:36 +01:00
										 |  |  |             \item Cross-Model Pseudo-Labeling | 
					
						
							| 
									
										
										
										
											2023-03-20 17:42:30 +01:00
										 |  |  |             \item Primary backbone (large model) | 
					
						
							| 
									
										
										
										
											2023-03-20 11:39:36 +01:00
										 |  |  |             \item Supplemented by lightweight auxiliary network | 
					
						
							|  |  |  |             \begin{itemize} | 
					
						
							| 
									
										
										
										
											2023-03-20 17:42:30 +01:00
										 |  |  |                 \item Different structure | 
					
						
							| 
									
										
										
										
											2023-03-24 14:17:21 +01:00
										 |  |  |                 \item Fewer channels (smaller) | 
					
						
							| 
									
										
										
										
											2023-03-20 11:39:36 +01:00
										 |  |  |             \end{itemize} | 
					
						
							|  |  |  |             \item Different representation of data complements primary backbone | 
					
						
							| 
									
										
										
										
											2023-03-14 19:05:25 +01:00
										 |  |  |         \end{itemize} | 
					
						
							|  |  |  |     \end{frame} | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2023-03-20 17:42:30 +01:00
										 |  |  |     \begin{frame}{Structure Visualization} | 
					
						
							|  |  |  |         \includegraphics[scale=.17]{rsc/structure} | 
					
						
							|  |  |  |     \end{frame} | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     \begin{frame}{Performance Perspectives} | 
					
						
							| 
									
										
										
										
											2023-03-24 14:17:21 +01:00
										 |  |  |         \begin{itemize} | 
					
						
							|  |  |  |             \item 1\% labeled data + 400 Labels | 
					
						
							|  |  |  |             \item Kinetics-400 dataset | 
					
						
							|  |  |  |         \end{itemize} | 
					
						
							| 
									
										
										
										
											2023-03-20 17:42:30 +01:00
										 |  |  |         \includegraphics[scale=.205]{rsc/performance_comparison} | 
					
						
							|  |  |  |     \end{frame} | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     \section{Give me the math!} | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     \begin{frame}{Definitions} | 
					
						
							|  |  |  |         \begin{itemize} | 
					
						
							|  |  |  |             \item Labeled data set of size $N_l$\\ | 
					
						
							|  |  |  |             $\mathcal{V} = \{(v_1,y_1), \dots, (v_{N_l}, y_{N_l})\}$ | 
					
						
							|  |  |  |             \item Unlabeled data set of size $N_u$\\ | 
					
						
							|  |  |  |             $\mathcal{U} = \{u_1, \dots, u_{N_u}\}$ | 
					
						
							|  |  |  |             \item in general $\lvert\mathcal{U}\rvert \gg \lvert\mathcal{V}\rvert$\\ | 
					
						
							|  |  |  |         \end{itemize} | 
					
						
							|  |  |  |     \end{frame} | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     \begin{frame}[allowframebreaks]{How existing method \textit{FixMatch} works} | 
					
						
							|  |  |  |         \begin{itemize} | 
					
						
							|  |  |  |             \item $B_u \coloneqq \text{Batchsize}$ | 
					
						
							| 
									
										
										
										
											2023-03-24 14:17:21 +01:00
										 |  |  |             \item $\tau \coloneqq \text{Confidence Threshold (Hyperparameter)}$ | 
					
						
							| 
									
										
										
										
											2023-03-20 17:42:30 +01:00
										 |  |  |             \item $F(\mathcal{T}_{\text{strong}}(u_i)) \coloneqq \text{Class distribution}$ | 
					
						
							|  |  |  |             \item $p_i \coloneqq F(\mathcal{T}_{\text{weak}}(u_i))$ | 
					
						
							|  |  |  |             \item $\hat{y}_i \coloneqq \arg \max(p_i) \coloneqq \text{Pseudo Label}$ | 
					
						
							|  |  |  |             \item $\mathcal{H} \coloneqq \text{Cross-entropy loss}$ | 
					
						
							|  |  |  |             \item $\mathcal{L}_u \coloneqq \text{Loss on the unlabeled data}$ | 
					
						
							| 
									
										
										
										
											2023-03-24 14:17:21 +01:00
										 |  |  |             \item $F \coloneqq \text{Model}$ | 
					
						
							|  |  |  |             \item $\mathbbm{1} \coloneqq \text{Indicator Function}$ | 
					
						
							| 
									
										
										
										
											2023-03-20 17:42:30 +01:00
										 |  |  |         \end{itemize} | 
					
						
							|  |  |  |         \begin{align*} | 
					
						
							| 
									
										
										
										
											2023-03-24 14:17:21 +01:00
										 |  |  |             \mathcal{L}_u = \frac{1}{B_u} \sum_{i=1}^{B_u} \mathbbm{1}(\max(p_i) \geq \tau) \mathcal{H}(\hat{y}_i,F(\mathcal{T}_{\text{strong}}(u_i))) | 
					
						
							| 
									
										
										
										
											2023-03-20 17:42:30 +01:00
										 |  |  |         \end{align*} | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         \framebreak | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         \begin{itemize} | 
					
						
							| 
									
										
										
										
											2023-03-24 14:17:21 +01:00
										 |  |  |             \item $\mathbbm{1}(\max(p_i) \geq \tau)$ | 
					
						
							| 
									
										
										
										
											2023-03-20 17:42:30 +01:00
										 |  |  |             \begin{itemize} | 
					
						
							|  |  |  |                 \item 'confidence-based masking' | 
					
						
							|  |  |  |                 \item retain label only if largest probability is above threshold | 
					
						
							|  |  |  |                 \item keep only 'high confidence' labels | 
					
						
							|  |  |  |             \end{itemize} | 
					
						
							|  |  |  |             \item $\mathcal{H}(\hat{y}_i,F(\mathcal{T}_{\text{strong}}(u_i)))$ | 
					
						
							|  |  |  |             \begin{itemize} | 
					
						
							|  |  |  |                 \item 'consistency regularization' | 
					
						
							|  |  |  |                 \item cross-entropy loss of strong augmented and weak augmented data | 
					
						
							|  |  |  |             \end{itemize} | 
					
						
							|  |  |  |         \end{itemize} | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     \end{frame} | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     \begin{frame}[allowframebreaks]{CMPL (Cross-Model Pseudo-Labeling)} | 
					
						
							|  |  |  |         \begin{itemize} | 
					
						
							|  |  |  |             \item $F(\cdot) \coloneqq \text{Primary backbone}$ | 
					
						
							|  |  |  |             \item $A(\cdot) \coloneqq \text{Auxiliary network}$ | 
					
						
							|  |  |  |             \item Learning on labeled data | 
					
						
							|  |  |  |             \begin{align*} | 
					
						
							|  |  |  |                 \mathcal{L}_s^F &= \frac{1}{B_l} \sum_{i=1}^{B_l} \mathcal{H}(y_i,F(\mathcal{T}^F_{\text{standard}}(v_i)))\\ | 
					
						
							|  |  |  |                 \mathcal{L}_s^A &= \frac{1}{B_l} \sum_{i=1}^{B_l} \mathcal{H}(y_i,A(\mathcal{T}^F_{\text{standard}}(v_i))) | 
					
						
							|  |  |  |             \end{align*} | 
					
						
							|  |  |  |             \item $\mathcal{T}^F_{\text{standard}}(v_i) \coloneqq \text{standard augmentations for action recognition}$ | 
					
						
							|  |  |  |         \end{itemize} | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         \framebreak | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         \begin{itemize} | 
					
						
							|  |  |  |             \item Learning on unlabeled data | 
					
						
							|  |  |  |             \begin{align*} | 
					
						
							| 
									
										
										
										
											2023-03-24 14:17:21 +01:00
										 |  |  |                 \mathcal{L}_u^F &= \frac{1}{B_u} \sum_{i=1}^{B_u} \mathbbm{1}(\max(p_i^A) \geq \tau) \mathcal{H}(\hat{y}_i^A,F(\mathcal{T}_{\text{strong}}(u_i)))\\ | 
					
						
							|  |  |  |                 \mathcal{L}_u^A &= \frac{1}{B_u} \sum_{i=1}^{B_u} \mathbbm{1}(\max(p_i^F) \geq \tau) \mathcal{H}(\hat{y}_i^F,A(\mathcal{T}_{\text{strong}}(u_i)))\\ | 
					
						
							| 
									
										
										
										
											2023-03-20 17:42:30 +01:00
										 |  |  |             \end{align*} | 
					
						
							|  |  |  |             \item Complete training objective | 
					
						
							|  |  |  |             \begin{align*} | 
					
						
							|  |  |  |                 \mathcal{L} = (\mathcal{L}_s^F + \mathcal{L}_s^A) + \lambda(\mathcal{L}_u^F + \mathcal{L}_u^A) | 
					
						
							|  |  |  |             \end{align*} | 
					
						
							|  |  |  |             \item $\lambda \coloneqq \text{Balancing coefficient for unsupervised loss}$ | 
					
						
							|  |  |  |         \end{itemize} | 
					
						
							|  |  |  |     \end{frame} | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2023-03-24 14:17:21 +01:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2023-03-20 17:42:30 +01:00
										 |  |  |     \section{Implementation} | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     \begin{frame}{Networks} | 
					
						
							|  |  |  |         \begin{itemize} | 
					
						
							|  |  |  |             \item Auxiliary Network | 
					
						
							|  |  |  |             \begin{itemize} | 
					
						
							|  |  |  |                 \item sub-network of primary model | 
					
						
							|  |  |  |                 \item 3D-ResNet18 | 
					
						
							|  |  |  |                 \item \textbf{3D-ResNet50x1/4} | 
					
						
							|  |  |  |             \end{itemize} | 
					
						
							|  |  |  |             \item Backbone network | 
					
						
							|  |  |  |             \begin{itemize} | 
					
						
							|  |  |  |                 \item larger version of aux-net | 
					
						
							|  |  |  |                 \item \textbf{3D-ResNet50} | 
					
						
							|  |  |  |             \end{itemize} | 
					
						
							|  |  |  |         \end{itemize} | 
					
						
							|  |  |  |     \end{frame} | 
					
						
							| 
									
										
										
										
											2023-03-14 19:05:25 +01:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2023-03-20 17:42:30 +01:00
										 |  |  |     \begin{frame}{Dataset} | 
					
						
							|  |  |  |         \begin{itemize} | 
					
						
							|  |  |  |             \item Kinetics-400 | 
					
						
							|  |  |  |             \begin{itemize} | 
					
						
							|  |  |  |                 \item 400 categories | 
					
						
							|  |  |  |                 \item 240k/20k training/validation samples | 
					
						
							|  |  |  |             \end{itemize} | 
					
						
							|  |  |  |             \item UCF-101 | 
					
						
							|  |  |  |             \begin{itemize} | 
					
						
							|  |  |  |                 \item 101 classes | 
					
						
							|  |  |  |                 \item 9.5k/4k training/validation samples | 
					
						
							|  |  |  |             \end{itemize} | 
					
						
							|  |  |  |             \item $\approx$10sec every video | 
					
						
							|  |  |  |             \item 1\% or 10\% labeled subsets balanced sampled from distribution | 
					
						
							|  |  |  |         \end{itemize} | 
					
						
							| 
									
										
										
										
											2023-03-14 19:05:25 +01:00
										 |  |  |     \end{frame} | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2023-03-20 17:42:30 +01:00
										 |  |  |     \begin{frame}{Performance Results} | 
					
						
							|  |  |  |         \includegraphics[scale=.65]{rsc/results} | 
					
						
							|  |  |  |     \end{frame} | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2023-03-14 19:05:25 +01:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2023-03-20 11:39:36 +01:00
										 |  |  |     % ---  THE END
 | 
					
						
							| 
									
										
										
										
											2023-03-14 19:05:25 +01:00
										 |  |  | 
 | 
					
						
							|  |  |  |     \begin{frame}[focus] | 
					
						
							| 
									
										
										
										
											2023-03-20 11:39:36 +01:00
										 |  |  |         Thanks for your Attention! | 
					
						
							| 
									
										
										
										
											2023-03-14 19:05:25 +01:00
										 |  |  |     \end{frame} | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | %----------------------------------------------------------------------------------------
 | 
					
						
							|  |  |  | %	 CLOSING/SUPPLEMENTARY SLIDES
 | 
					
						
							|  |  |  | %----------------------------------------------------------------------------------------
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     \appendix | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2023-03-20 11:39:36 +01:00
										 |  |  |     \begin{frame}{Sources} | 
					
						
							| 
									
										
										
										
											2023-03-14 19:05:25 +01:00
										 |  |  |         \nocite{*} % Display all references regardless of if they were cited
 | 
					
						
							|  |  |  |         \bibliography{sources} | 
					
						
							|  |  |  |         \bibliographystyle{plain} | 
					
						
							|  |  |  |     \end{frame} | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | \end{document} |