ImageImpaint_Python_II/ImageImpaint.py

97 lines
3.0 KiB
Python

import numpy as np
import torch
from DataLoader import get_image_loader
from Net import ImageNN
# 01.05.22 -- 0.5h
from netio import save_model, load_model
def get_train_device():
device = 'cuda' if torch.cuda.is_available() else 'cpu'
print(f'Device to train net: {device}')
return torch.device(device)
def train_model():
# Set a known random seed for reproducibility
np.random.seed(0)
torch.manual_seed(0)
device = get_train_device()
# Load datasets
train_loader, test_loader = get_image_loader("training/")
nn = ImageNN(n_in_channels=3) # todo pass size ason.
nn.train() # init with train mode
nn.to(device) # send net to device available
optimizer = torch.optim.SGD(nn.parameters(), lr=0.1) # todo adjust parameters and lr
loss_function = torch.nn.MSELoss()
n_epochs = 15 # todo epcchs here
# todo look wtf is that
nn.double()
train_sample_size = len(train_loader)
losses = []
best_eval_loss = 0
for epoch in range(n_epochs):
print(f"Epoch {epoch}/{n_epochs}\n")
i = 0
for input_tensor, target_tensor in train_loader:
input_tensor.to(device)
target_tensor.to(device)
output = nn(input_tensor) # get model output (forward pass)
loss = loss_function(output, target_tensor) # compute loss given model output and true target
loss.backward() # compute gradients (backward pass)
optimizer.step() # perform gradient descent update step
optimizer.zero_grad() # reset gradients
losses.append(loss.item())
print(
f'\rTraining epoch {epoch} [{i}/{train_sample_size * train_loader.batch_size}] (curr loss: {loss.item():.3})',
end='')
i += train_loader.batch_size
# eval model every 500th element
if i % 500 == 0:
print(f"\nEvaluating model")
eval_loss = eval_model(nn, test_loader, loss_function, device)
print(f"Evalution loss={eval_loss}")
if eval_loss > best_eval_loss:
best_eval_loss = eval_loss
save_model(nn)
# switch net to eval mode
print(eval_model(nn, test_loader, loss_function, device=device))
# func to evaluate our trained model
def eval_model(model: torch.nn.Module, dataloader: torch.utils.data.DataLoader, loss_fn, device: torch.device):
# switch to eval mode
model.eval()
loss = .0
# disable gradient calculations
with torch.no_grad():
i = 0
for input, target in dataloader:
input.to(device)
target.to(device)
out = model(input)
loss += loss_fn(out, target).item()
print(f'\rEval prog[{i}/{len(dataloader) * dataloader.batch_size}]', end='')
i += dataloader.batch_size
print()
loss /= len(dataloader)
model.train()
return loss
def apply_model():
model = load_model()
pass