import glob import os import numpy as np import torch.utils.data.dataset from torch.utils.data import Dataset from torch.utils.data import DataLoader from torchvision import transforms from PIL import Image import ex4 IMG_SIZE = 100 class ImageDataset(Dataset): def __init__(self, image_dir, precision: np.float32 or np.float64): self.image_files = sorted(glob.glob(os.path.join(image_dir, "**", "*.jpg"), recursive=True)) self.precision = precision def __getitem__(self, index): # Open image file, convert to numpy array and scale to [0, 1] target_image = Image.open(self.image_files[index]) target_image = preprocess(target_image, self.precision) # calculate image with black grid doomed_image = ex4.ex4(target_image, (5, 5), (4, 4)) # convert image to grayscale # target_image = rgb2gray(target_image) # todo look if gray image makes sense return doomed_image[0], np.transpose(target_image, (2, 0, 1)) def __len__(self): return len(self.image_files) def preprocess(input: np.array, precision: np.float32 or np.float64) -> np.array: # image = np.array(Image.open(self.image_files[index]), dtype=np.float32) / 255 resize_transforms = transforms.Compose([ transforms.Resize(size=IMG_SIZE), transforms.CenterCrop(size=(IMG_SIZE, IMG_SIZE)), ]) input = resize_transforms(input) # normalize image from 0-1 target_image = np.array(input, dtype=precision) / 255.0 # Perform normalization for each channel # image = (image - self.norm_mean) / self.norm_std return target_image # postprecess should be the inverese function of preprocess! def postprocess(input: np.array) -> np.array: target_image = (input * 255.0).astype(np.uint8) return target_image def get_image_loader(path: str, precision: np.float32 or np.float64): image_dataset = ImageDataset(path, precision) totlen = len(image_dataset) test_set_size = .1 trains, tests = torch.utils.data.dataset.random_split(image_dataset, lengths=(totlen - int(totlen * test_set_size), int(totlen * test_set_size)), generator=torch.Generator().manual_seed(0)) train_loader = DataLoader( trains, shuffle=True, # shuffle the order of our samples batch_size=25, # stack 4 samples to a minibatch num_workers=4 # no background workers (see comment below) ) test_loader = DataLoader( tests, shuffle=True, # shuffle the order of our samples batch_size=5, # stack 4 samples to a minibatch num_workers=0 # no background workers (see comment below) ) return train_loader, test_loader