implmente save/load, eval structure

This commit is contained in:
lukas-heiligenbrunner 2022-06-01 16:07:32 +02:00
parent 2966df9a39
commit b1bc3a2c64
3 changed files with 58 additions and 10 deletions

View File

@ -2,6 +2,7 @@ import glob
import os import os
import numpy as np import numpy as np
import torch.utils.data.dataset
from PIL import Image from PIL import Image
from torch.utils.data import Dataset from torch.utils.data import Dataset
from torch.utils.data import DataLoader from torch.utils.data import DataLoader
@ -27,5 +28,22 @@ class ImageDataset(Dataset):
def get_image_loader(path: str): def get_image_loader(path: str):
image_dataset = ImageDataset(path) image_dataset = ImageDataset(path)
image_loader = DataLoader(image_dataset, shuffle=True, batch_size=10) totlen = len(image_dataset)
return image_loader trains, tests = torch.utils.data.dataset.random_split(image_dataset, (int(totlen * .7), totlen - int(totlen * .7)),
generator=torch.Generator().manual_seed(42))
train_loader = DataLoader(
trains,
shuffle=True, # shuffle the order of our samples
batch_size=4, # stack 4 samples to a minibatch
num_workers=0 # no background workers (see comment below)
)
test_loader = DataLoader(
tsts,
shuffle=True, # shuffle the order of our samples
batch_size=4, # stack 4 samples to a minibatch
num_workers=0 # no background workers (see comment below)
)
return train_loader, test_loader

View File

@ -4,19 +4,23 @@ from DataLoader import get_image_loader
from Net import ImageNN from Net import ImageNN
# 01.05.22 -- 0.5h
from netio import save_model, load_model
def train_model(): def train_model():
image_loader = get_image_loader("my/supercool/image/dir") train_loader, test_loader = get_image_loader("my/supercool/image/dir")
# todo split to train and test (maybe evaluation sets) nn = ImageNN() # todo pass size ason.
nn = ImageNN() # todo pass size ason. nn.train() # init with train mode
optimizer = torch.optim.SGD(nn.parameters(), lr=0.1) # todo adjust parameters and lr optimizer = torch.optim.SGD(nn.parameters(), lr=0.1) # todo adjust parameters and lr
loss_function = torch.nn.CrossEntropyLoss() loss_function = torch.nn.CrossEntropyLoss()
n_epochs = 15 # todo epcchs here n_epochs = 15 # todo epcchs here
# Training
losses = [] losses = []
for epoch in range(n_epochs): for epoch in range(n_epochs):
for input_tensor, target_tensor in image_loader: print(f"Epoch {epoch}/{n_epochs}\n")
for input_tensor, target_tensor in train_loader:
output = nn(input_tensor) # get model output (forward pass) output = nn(input_tensor) # get model output (forward pass)
loss = loss_function(output, target_tensor) # compute loss given model output and true target loss = loss_function(output, target_tensor) # compute loss given model output and true target
loss.backward() # compute gradients (backward pass) loss.backward() # compute gradients (backward pass)
@ -24,9 +28,21 @@ def train_model():
optimizer.zero_grad() # reset gradients optimizer.zero_grad() # reset gradients
losses.append(loss.item()) losses.append(loss.item())
# todo evaluate trained model # switch net to eval mode
nn.eval()
with torch.no_grad():
for input_tensor, target_tensor in test_loader:
# iterate testloader and we have to decide somhow now the goodness of the prediction
out = nn(input_tensor) # apply model
diff = out - target_tensor
# todo evaluate trained model on testset loader
# todo save trained model to blob file # todo save trained model to blob file
save_model(nn)
def apply_model(): def apply_model():
model = load_model()
pass pass

14
netio.py Normal file
View File

@ -0,0 +1,14 @@
import torch
from Net import ImageNN
def save_model(model: torch.nn.Module):
torch.save(model.state_dict(), 'impaintmodel.pth')
def load_model():
model = ImageNN()
model.load_state_dict(torch.load('model_weights.pth'))
model.eval()
return model