2022-05-18 08:49:41 +00:00
|
|
|
"""
|
|
|
|
Author: Lukas Heiligenbrunner
|
|
|
|
Matr.Nr.: K12104785
|
|
|
|
Exercise 4
|
|
|
|
"""
|
|
|
|
|
2022-05-18 05:57:00 +00:00
|
|
|
import numpy as np
|
|
|
|
|
|
|
|
|
2022-05-18 08:49:41 +00:00
|
|
|
def ex4(image_array: np.array, offset: (int, int), spacing: (int, int)) -> (np.array, np.array, np.array):
|
|
|
|
if not isinstance(image_array, np.ndarray):
|
|
|
|
raise TypeError
|
|
|
|
|
|
|
|
if len(image_array.shape) != 3 or image_array.shape[2] != 3:
|
|
|
|
raise NotImplementedError
|
|
|
|
|
|
|
|
if not all([str(x).isnumeric() for x in offset + spacing]):
|
|
|
|
raise ValueError
|
|
|
|
|
|
|
|
if not all([0 <= x <= 32 for x in offset]) or not all([2 <= x <= 8 for x in spacing]):
|
|
|
|
raise ValueError
|
|
|
|
|
|
|
|
src = np.transpose(image_array, (2, 0, 1))
|
|
|
|
mask = np.zeros_like(src)
|
|
|
|
|
|
|
|
for x in range(offset[0], mask.shape[2], spacing[0]):
|
|
|
|
for y in range(offset[1], mask.shape[1], spacing[1]):
|
|
|
|
mask[:, y, x] = 1
|
|
|
|
|
|
|
|
# masking the input
|
|
|
|
masked = src * mask
|
|
|
|
|
|
|
|
# calculate the remaining pixels
|
|
|
|
rest = src * (1 - mask)
|
|
|
|
rest = rest[1 - mask > 0]
|
|
|
|
|
|
|
|
# raise error if known pixels are less than 144
|
|
|
|
if (src.shape[1] * src.shape[2] - rest.size / 3) < 144:
|
|
|
|
raise ValueError
|
|
|
|
|
|
|
|
return masked, mask, rest
|
2022-05-18 05:57:00 +00:00
|
|
|
|
|
|
|
|
|
|
|
if __name__ == '__main__':
|
2022-05-18 08:49:41 +00:00
|
|
|
f, d, g = ex4(np.array([[(255, 255, 255), (255, 255, 255), (255, 255, 255), (255, 255, 255)],
|
|
|
|
[(255, 255, 255), (255, 255, 255), (255, 255, 255), (255, 255, 255)],
|
|
|
|
[(255, 255, 255), (255, 255, 255), (255, 255, 255), (255, 255, 255)],
|
|
|
|
[(255, 255, 255), (255, 255, 255), (255, 255, 255), (255, 255, 255)],
|
|
|
|
[(255, 255, 255), (255, 255, 255), (255, 255, 255), (255, 255, 255)]
|
|
|
|
]), offset=(1, 1), spacing=(2, 2))
|
|
|
|
print(g)
|