2022-06-01 10:27:58 +00:00
|
|
|
import torch
|
|
|
|
|
|
|
|
|
|
|
|
class ImageNN(torch.nn.Module):
|
2022-06-28 16:28:36 +00:00
|
|
|
def __init__(self, n_in_channels: int = 1, n_hidden_layers: int = 3, n_kernels: int = 32, kernel_size: int = 7):
|
|
|
|
"""Simple CNN with `n_hidden_layers`, `n_kernels`, and `kernel_size` as hyperparameters"""
|
2022-06-01 10:27:58 +00:00
|
|
|
super().__init__()
|
|
|
|
|
2022-06-28 16:28:36 +00:00
|
|
|
cnn = []
|
|
|
|
for i in range(n_hidden_layers):
|
|
|
|
cnn.append(torch.nn.Conv2d(
|
|
|
|
in_channels=n_in_channels,
|
|
|
|
out_channels=n_kernels,
|
|
|
|
kernel_size=kernel_size,
|
|
|
|
padding=int(kernel_size / 2)
|
|
|
|
))
|
|
|
|
cnn.append(torch.nn.ReLU())
|
|
|
|
n_in_channels = n_kernels
|
|
|
|
self.hidden_layers = torch.nn.Sequential(*cnn)
|
|
|
|
|
|
|
|
self.output_layer = torch.nn.Conv2d(
|
|
|
|
in_channels=n_in_channels,
|
|
|
|
out_channels=3,
|
|
|
|
kernel_size=kernel_size,
|
|
|
|
padding=int(kernel_size / 2)
|
|
|
|
)
|
|
|
|
|
|
|
|
def forward(self, x):
|
|
|
|
"""Apply CNN to input `x` of shape (N, n_channels, X, Y), where N=n_samples and X, Y are spatial dimensions"""
|
|
|
|
cnn_out = self.hidden_layers(x) # apply hidden layers (N, n_in_channels, X, Y) -> (N, n_kernels, X, Y)
|
|
|
|
pred = self.output_layer(cnn_out) # apply output layer (N, n_kernels, X, Y) -> (N, 1, X, Y)
|
|
|
|
return pred
|